KOMATSU

Komatsu Ltd. Environmental Affairs Department 2-3-6, Akasaka, Minato-ku, Tokyo 107-8414, Japan http://www.komatsu.com/CompanyInfo/csr/

Komatsu welcomes your comments. E-mail: kankyo@komatsu.co.jp

Environmental Affairs Department TEL: +81-3-5561-2646 FAX: +81-3-5561-2780

2016 Environmental Report Digest

Contents

Message from Top Management …	2
Special Story	3
Pursuing Environmental Management ···	5
Mitigating Climate Change	14
Promoting Recycling	19
Biodiversity	21

Environmental Risk Management ··· 22
 Recent External Commendations and Evaluations on Komatsu's Environmental Conservation and Social Activities
■Site Data (Japan) ······ 25
Site Data (Overseas) ······ 29
Environmental Education and Environmental Accounting

Editorial Policy

- The Environmental Report Digest 2016 is a digest regarding environmental activities, based on content from the "Environmental Report" and "Data" from the website.
- As part of the initiatives in the environmental field, we have presented the new main initiatives or representative activities.
- The content of the "Environmental Report" and "Data" can be viewed on our website, as well as (1) general information, such as policies and general rules, (2) information on ongoing activities and initiatives, and (3) a comprehensive disclosure of detailed and related information.
- Each item of the "Environmental Report" and "Data" on this website indicates that it has received an independent practitioner's assurance.

Website: http://www.komatsu.com/CompanyInfo/csr/

Scope of This Report

Komatsu (parent company) manufacturing facilities, specifically the following eight plants

The Awazu Plant, the Kanazawa Plant [including the Kanazawa-Daiichi Plant and the Kanazawa-Daini Plant], the Osaka Plant [including the Rokko Plant], the Ibaraki Plant and the Oyama Plant [including Komatsu Cummins Engine Co., Ltd., Industrial Power Alliance Ltd. and GIGAPHOTON, Inc.], the Koriyama Plant, and the Shonan Plant [including KELK Ltd.], the Tochigi Plant. Komatsu Group manufacturing facilities in Japan, specifically the above eight plants and the following four business units Komatsu Castex Ltd., Komatsu Cabtec Co., Ltd., Komatsu NTC Ltd. and Komatsu House Ltd.

• Komatsu Group manufacturing facilities outside Japan, specifically the following 20 plants

Komatsu America Corp., [Chattanooga Manufacturing Operation], [Peoria Manufacturing Operation], [Newberry Manufacturing Operation], Komatsu do Brasil Ltda., Hensley Industries, Inc. (The Americas), Komatsu UK Ltd., Komatsu Hanomag GmbH (Germany), Komatsu Mining Germany GmbH, Komatsu Manufacturing Rus, LLC, Komatsu Italia Manufacturing S.p.A (Italy), Komatsu Forest AB (Sweden), PT Komatsu Indonesia Tbk, PT Komatsu Undercarriage Indonesia, Bangkok Komatsu Co., Ltd., Komatsu India Pvt. Ltd., Komatsu Shantui Construction Machinery Co., Ltd., Komatsu (Changzhou) Construction Machinery Corporation, Komatsu (Changzhou) Foundry Corp., Komatsu (Shandong) Construction Machinery Corp, and Komatsu Undercarriage China Corp.

Komatsu Group manufacturing facilities including outside Japan: All of the 32 above-mentioned offices are shown.

Period Covered

This report principally covers data for the period from April 2015 to the end of March 2016, with some information from after April 2016.

Endeavors for the Environment based on ESG

ESG, which we have been working on for a long time, will increase in importance more and more in the future. In the Midterm Management Plan "Together We Innovate GEMBA Worldwide" beginning in April 2016, ESG is considered a priority area in our endeavors.

Within this plan, we have set environmental objectives based on the spirit of Komatsu Way, to make the most of our competitive strength in manufacturing products so that Komatsu becomes an indispensable presence for our customers. In terms of CO_2 emissions during the life cycle of construction equipment, preliminary calculations show that approximately 90% of all emissions over the life cycle is emitted from the construction equipment being used at the workplace (Gemba) of the customers, so it is clear that reduction of these emissions is vital. From this, we have set a target to reduce CO_2 emissions in the use of Komatsu products by 25% per workload by the year 2025.

Furthermore, by making the most of Komatsu's strength in product manufacturing, we will set high target rates for the reduction of CO_2 in production and proactively work towards achieving these goals.

Endeavors for Environmental Issues based on Innovation

As a part of Komatsu's endeavors to reduce CO_2 emissions when customers are using construction equipment, we have approached the issue from the three points of "Dantotsu Products", "Dantotsu Services" and "Dantotsu Solutions". As a Dantotsu Product, we introduced the first hybrid hydraulic

Message from Top Management

Strengthening and Promoting Environmental Endeavors for based on the Komatsu Way

> President Tetsuji Ohashi

excavator to the market world-wide in 2008, and as a Dantotsu Service, we have recommended a fuel-efficient method of driving based on KOMTRAX. "Smart Construction," which began in Japan in February 2015, is a "Dantotsu Solution" by Komatsu that makes the safety and high productivity of the "Gemba of the Future" a reality through the automation of equipment operation by ICT construction equipment and by using ICT technology to connect all data involved in a construction site, such as measurement data, design data, and work progress. The efficiency of construction equipment operation will be increased dramatically and, as a result, the amount of CO_2 emissions per workload will be greatly reduced. By spreading these innovations, Komatsu will contribute to solving the environmental issues of the construction sites (Gemba).

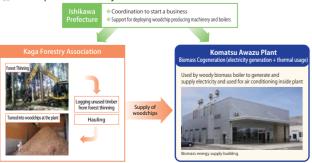
Endeavors for Environmental Issues of the Manufacturing Sites through Strengthening Competitiveness in Product Manufacturing

Activities to cut electricity use in half within Komatsu's domestic plants have been progressing, and we were able to achieve a major reduction in the amount of electricity purchased by FY2015. Going forward—together with our business partners we will promote innovations in the manufacturing sites using "Connectivity" through IoT, achieve even higher levels of energy conservation, and strengthen our competitiveness in product manufacturing, as we continue to work on finding solutions to environmental issues.

July 2016

Contributions to the Local Region through Forestry

-Using Biomass Energy from Unused Timber from Forest Thinning-


al Story

Komatsu's Awazu Plant, in cooperation with Ishikawa Prefecture's KAGA Forest Association, has taken the unused timber produced by forest thinning from the local forestry industry to be used as biomass chip fuel. By doing so not only is the Komatsu Awazu Plant reducing the amount of electricity and oil purchased and decreasing its CO₂ emissions, it is also contributing to the vitalization of the local forestry and other indigenous industries, as part of its aim to promote activities that build up the local region.

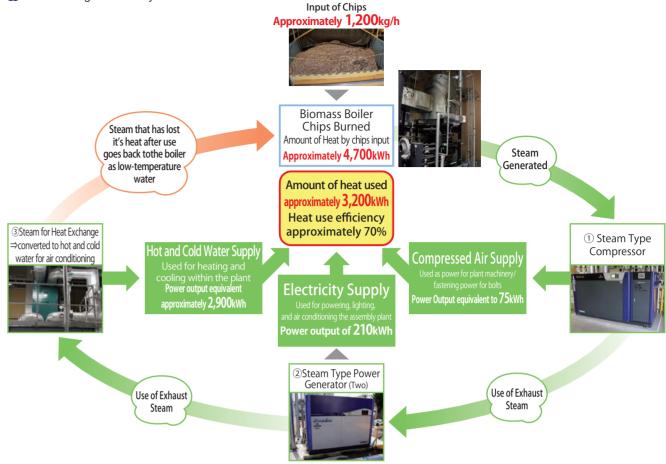
Taking into consideration the electrical power condition after the Great East Japan Earthquake in 2011. Komatsu has been promoting activities that will result in halving the amount of electricity used. The Awazu Plant in Ishikawa Prefecture constructed a cutting-edge assembly plant and incorporated various energy-saving and energy-creating measures in order to aspire to the goal of decreasing its electricity purchase for the new plant by over 90%. One such measure considered was the use of renewable energy, and the decision was made to make use of electricity and heat energy supplied by biomass cogeneration. With the aim of contributing to the vitalization of the local forestry industry by purchasing the necessary woodchip fuel from local foresters, in February 2014 the Awazu Plant entered into the "Comprehensive Collaboration Agreement regarding the Forestry Industry" with the Ishikawa Prefecture and the Ishikawa Prefecture Forestry Cooperative Federation. Based on this cooperative relationship, the deployment of the biomass cogeneration system has progressed at Komatsu and the KAGA Forest Association has started up a woodchip fuel business to supply it to the Komatsu Awazu Plant

As a part of this effort, the local industries have developed a woodchip manufacturing machine with even better manufacturing

Examples of Woody Biomass Use Model

capabilities, which has made the more stable production of woodchips possible. In this way, the energy-saving and energy-creating efforts of the Awazu Plant has lead to cooperation with the local manufacturing industries and the vitalization of the local industries.

Komatsu's Biomass Cogeneration System


The Biomass Cogeneration System that Komatsu deployed this time produces high-pressure steam by burning chip fuel in a steam boiler. The energy of that steam is then used to first, create compressed air with a steam compressor; next, electricity is generated by a steam-electric generator; then finally, the heat exchanger changes it to hot or cold water for heating and cooling. With this system, it has become possible to use the heat produced by the steam boiler in a highly efficient way. And, though heat use efficiency using the steam electricity generation alone is usually 15 to 20%, by using the heat effectively for things other than electricity generation, a high heat use efficiency of approximately 70% can be achieved, leading to a reduction in energy cost.

The Biomass Cogeneration System of the Awazu Plant has gone into full-scale operation since April 2015, and by using it for electricity, compressed air, hot and cool energy, a savings of approximately 1,400MWh of purchased electricity and approximately 800 kiloliters of oil is expected annually.

Woodchip Production by the KAGA Forest Association

As a result of these efforts, the KAGA Forest Association has taken this opportunity to begin a new business of producing woodchips from materials such as listing and unused lumber from forest thinning. They cooperated with Komatsu's local business partner to develop a new woodchip production machine. The new machine has been able to achieve more stable operation compared to previous models, and has made it possible to get a steady supply (7,000 tons/year) of woodchips.

In addition, Ishikawa Prefecture is expecting that there will be a decrease in damage from heavy rains and flooding due to reduced flood wood diffusion, as well as damage from harmful wildlife being prevented, as a result of the forests being cleared of unused lumber from forest thinning and residue materials being left in the forest.

O Woodchips Production by the KAGA Forest Association

Woodchips Production Building and Lumber for Woodchips

Newly Developed Woodchips Production Machine

Woodchip Product

-Beautification of the Mountains by Effective Utilization of Unused Materials

Effective utilization of the listing and timber from forest thinning that had been left neglected was one of the problems of the forest association. This production of woodchips makes effective use of unused materials and thereby cleans up the mountains, which in turn makes the forest owners happy, and is therefore considered a very good thing. Hereon, we would like to keep promoting efficiency and improving the revenue aspect to aim for sustainable forestry.

Biomass Cogeneration System

Contributing to Society/Local Regions through Core Business

It is hoped that the activities and efforts introduced thus far can provide the following effects, and contribute to Komatsu's goal of solving problems facing society and the local regions through Komatsu's core business.

- (1) Contributing to the vitalization of local forestry (Business of turning unused materials into woodchips)
- (2) Energy cost reduction and decrease in CO_2 emissions for Komatsu (Implementation of high efficiency Biomass Cogeneration System)
- (3) Contributing to the vitalization of local businesses (new sales of the woodchip production machine)
- (4) Contributing to sustaining a healthy natural environment and regional revitalization based on cooperating with the local government.

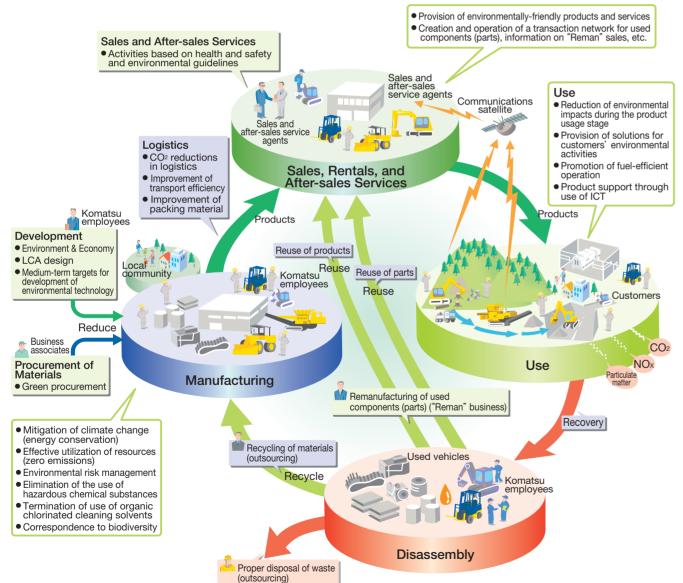
Komatsu will provide support to the local forestry and farming with the technology and know-how that it has developed, and hopes to continue contributing to building up the local region and the vitalization of entire local industries.

> KAGA Forest Association Nata Plant Deputy General Plant Manager

> > Kensaku Tanaka

Komatsu promotes environmentally-friendly activities throughout the entire Group to realize its vision of "What Komatsu Can Do and What It Must Do" for the environment and sustainable development.

Komatsu's Relationship with the Environment


In recognition of the fact that our business activities affect the environment on a regional and global level, we, at Komatsu, have placed the focus on the following four key areas:

- 1) Climate Change
- 2) Establishment of a Sound Material-Cycle Society
- 3) Conservation of Air, Water and Other Natural Resources as well as Management of Chemical Substances
- 4) Biodiversity

In line with the Komatsu Earth Environment Charter revised in 2010, the Komatsu Group embarks on global initiatives across business areas guided by the fundamental principles of

- (1) Contributions to Realization of Sustainable Society,
- (2) Simultaneous Realization of Environmental and Economic Performance, and
- (3) Observance of Corporate Social Responsibility.

Komatsu Earth Environment Charter (June 2010 revision)

(Corporate Principles)

1. Contributions to Realization of Sustainable Society

Mankind must not only promote the further growth of a rich and comfortable society but also pass down this indispensable environment of our planet earth to future generations in a sound and healthy condition. We, at the Komatsu Group, define environmental conservation efforts as one of the highest priority management tasks, and endeavor to contribute to the sustainable growth of society by integrating advanced technologies into environmental conservation efforts in all our business activities. This is represented by our hybrid construction equipment which features a substantial reduction of CO₂ emissions while in operation and by our superior manufacturing.

2. Simultaneous Realization of Environmental and Economic Performance

We are committed to improving both environmental performance and economic efficiency, as a group of companies working toward superior manufacturing for customer satisfaction. To this end, we constantly take up the challenge of advancing technologies to develop creative products that improve both environmental performance throughout the product's life cycle and the product's economic performance at the same time.

3. Observance of Corporate Social Responsibility

Each company of the Komatsu Group promotes environmental conservation by not only complying with the applicable laws and regulations of the concerned host community, region and country but also by establishing its voluntary standards which consider global and local environmental concerns. Each company of the Group also strives to fulfill its corporate social responsibility by actively participating in local environmental conservation programs and thereby promoting close-knit communication with local communities, while striving to become a company trusted by all Komatsu stakeholders.

(Guidelines for Corporate Activity)

1. Basic Stances on Earth Environmental Problems

We, at the Komatsu Group, work for sustainable society and earth environment through our global business operations by addressing the following four environmental problems with the stances discussed below. 1) Climate Change

We will reduce the use of energy and emissions of greenhouse gas in all phases of our business activities ranging from research and development, procurement, production and logistics to sales and service as well as in the total life cycle of our products and services.

- 2) Establishment of a Sound Material-Cycle Society
- 3) Conservation of Air, Water and Other Environments as well as Management of Chemical Substances water quality, prevention of air pollution, noise and vibrations. stances for discontinuation of their use.

4) Biodiversitv

We recognize biodiversity as one of the important issues concerning the earth environment, evaluate, understand and analyze impact on it in all our business domains, and work on our tasks according to the criteria of the highest impact and/or the most effective actions.

2. Framework of Global, Group-wide Environmental Management System

The Komatsu Head Office, as well as the manufacturing facilities and main companies of the Komatsu Group, already with ISO certifications, will work to maintain and improve their environmental management system, while other manufacturing facilities and suppliers will also work to establish their environmental management systems and reduce their environmental impact. The Komatsu Environmental Committee develops environmental action plans and common guidelines for the Komatsu Group.

Based on these Group-wide plans and guidelines, each division or company sets up its own mid- to long-term targets, develops and implements specific action plans, reviews them regularly and works to continuously improve them.

3. Environmental Education and Communication

We believe that it is important to enhance the environmental awareness of each and every employee and thereby actively promote environmental awareness and education programs for all employees. We will gather environment-related information concerning not only our manufacturing facilities but also other related entities, such as major affiliated companies and suppliers, and strive to disclose such information, thereby facilitating proactive communication with all our stakeholders, such as customers, employees, local communities and suppliers and further expanding the content of environmental communication.

Through our business processes, we work to minimize the use of natural resources, such as materials and water, promote their re-use or recycle them as much as possible, and expand Zero Emissions from our manufacturing activities around the world. At the same time we ensure the thorough management of waste materials in all our business domains, including our suppliers and distributors. We also continuously work to increase the recyclability rate of products at the time of disposal.

We comply with not only local laws and regulations but also with our established standards concerning the conservation of

As much as possible, we also ensure the thorough management of chemical substances for use in our business activities. while continuously reducing the use of potentially harmful chemical substances or replacing them with alternative sub-

Environmental Action Plan and Results for FY2015

To promote the Komatsu Earth Environment Charter, the company formulates environmental action plans (implementation policies) for each field, establishes action targets for each fiscal year, and steadily advances its policies, while following up on their implementation status.

The detailed Environmental Action Plan and Results for each field are as follows.

O Environmental Management

Implementation policies	Objectives for FY2015	Results for FY2015	Medium- and long-term objectives
1. Strengthen environmental management systems	 Certification of overseas produc- tion sites (1 company) 	Recieved a certificate continuity audit and continued the certification One company (YNC) obtained certification	 Acquisition of integrated certification by the Komatsu Group Sales Agencies in Japan
2. Environmental education and training: Implement the education plan			Continue to organize courses and expand them to overseas locations
3. Conduct environmental audits for overseas subsidiaries	Environmental audit of an affiliated company in Thailand	Implemented environmental audit at BKC	Continuation of activity
4. Environmental communication: Publish a CSR & Environmental report	Formulate a communication plan and publish the report	 Published both the Japanese version (Web) and the English version (Web) in July 2015 	Enhance the quality of the content; con- tinue to release report in early stage

O Research and Development

Implementation policies	Objectives for FY2015	Results for FY2015	Medium- and long-term objectives
1. Reduce the environmental impact of construction equip-	Develop vehicles compliant with	standards (DO100U0LO 11 WASOO/000 0 DO45/SEMD 5 OD055 0 and stand	Development of vehicle compliant with STAGE V emission standard effective from 2019
	excavators: 10-13% reduction compared to Tier3)		Decrease emissions by 10% from Tier- standard compliant vehicles (hydraulii excavators) by FY2015 and 20% by FY2020
	vehicle (Hydraulic excavators:	Development of Tier4 final compliant hydraulic excavator (HB335-3 and more)	Decrease emissions by 35% from Tier- standard compliant hybrid vehicle (hydraulic excavators) by FY2015 and 40% by FY 2020
	Develop ICT construction equipment	 PC development work in progress: PC128USi-10 	(in progress)
Reduce CO ₂ Emissions from construction equipment and industrial vehicles (Biodiesel Fuel (BDF) measures: Carbon Offset)	B7 to B20 mixed light oil measures	 Already compliant with B10 state regulations in North America while working shift compliance from B15 to B20 in Indonesia 	Use of B30-compliant light oil blended with BDF from 2020 (Indonesia)
industrial vehicle	Achieve 99±0.5% for recyclability rate equipment compliant with the next developed vehicles	 Achieved 99% on a developed vehicle (her 4 Final emission standard-compliant vehicle, ICT construction equipment) 	Achieve recyclability rate of 99.5±0.5%
	substances at 75% reduction compared to 1998 levels	eles as compared to 1998 levels Realized cuts in lead usage in crawler-type construction equipment	Reduce lead usage by 90% as com pared to 1998 levels by 2017
Strictly control and reduce substances of environmental con-	Reduce the use of lead in vehicles newly developed	 Promoted the replacement of lead solder in residual parts other than electrical parts (tank fillers) 	-
cern in construction equipment and industrial vehicle	Utilize a separate hazardous sub- stances control system for each product type (to comply with REACH regulations)	Registered additional new 7 substances of SVHC under the EU REACH regula- tion, and controlled the usage of those SVHC substances. Conducted surveys of substances for EU destination models and EU mass production and development models (Implementation of component-specific substance surveys) - The control system is being deployed in other overseas countries (other than EU).	Manage substances of each compo nent pursuant with new data
2. Reduce the environmental impact of industrial machinery Market high-performance AC servo presses	Develop and expand business affil- iations for AC servo presses	 Released three models and lines in the H1F Series and also promoted develop- ment of other models and lines 	Expand AC servo press models and lines
	Development of the fiber laser cut- ting machine	 Released an updated control model of a three-dimensional fiber laser cutting machine (TLH) and also promoted development of other lines 	Expand business affiliations and applications
Market high-efficiency wire saws for solar cells	Develop ultra-fine wire-ready machines	 Took part in the implementation of the NEDO joint R&D project as a developer of processing technology "Development of Technologies for Cutting the Cost of Power Generation through High-Performance, High-Reliability Solar Power Generation." 	Cut the cost of power generation through enhanced power generation efficiency and use of slimmer wafers
Market compact machining center	Develop energy-saving compact grinders	Developed a demonstration line (under development)	Cut the amounts of electricity, air and coolant consumption by 50% com- pared to their previous levels
from plonto	Development of thermoelectric gener- ation system and volume-production of modules	 Promoting the practicalization of thermoelectric generators and launched vol- ume-production of self-supported power supply modules 	Commercialization
 Promote reuse and recycling Expand and promote the remanufacturing ("Reman") business and improve recyclability rate 	Promote and expand the Reman business	Enhanced QCD through increased site-to-site sharing of remanufacturing engi- neering information Implemented the concept of remanufacturing into general construction machinery components Opened a remanufacturing center in Myanmar	 Promote reuse and recycling through further improvements in recycling-re- lated technologies for parts Stimulate reuse and recycling world- wide by expanding Reman bases to accommodate demands

Manufacturing

Implementation policies	Objectives for FY2015	Results for FY2015	Medium- and long-term objectives
 Mitigation of climate change (energy conservation) Make a 54% improvement by FY2015 in the amount of CO₂ emissions per unit of manufacturing value compared to the FY2000 level at the Komatsu Group manufacturing facilities in Japan 	An improvement of 54% com- pared to FY2000	 Improved 42.7% from the FY2000 level (5.8 point reduction compared to the previous year) 	Achieve a 57% reduction by FY2020 compared to the FY2000 levels
Make a 41% improvement by FY2015 in the amount of CO_2 emissions per unit of manufacturing value compared to the FY2005 level at the Komatsu Group manufacturing facilities outside Japan		 Improved 33.2% compared to FY 2005 (0.2 point improvement compared to the previous year) 	Achieve a 32% reduction by FY2020 compared to the FY2010 levels
 Effective utilization of resources Maintain or make further progress in attaining 99.5% or greater recyclability rate by FY2015 (improvement towards zero emis- sions)(Komatsu Group manufacturing facilities in Japan) 			Continue a recycling rate of 99.5% by FY2020
Maintain or make further progress in attaining 95% or greater recyclability rate by FY2015 (Komatsu Group manufacturing facilities outside Japan)	Attain a recycling rate of 95% or greater by FY2015		Continue a recycling rate of 95% by FY2020
Achieve a reduction of more than 20% by FY2015 in the amount of waste generated per unit of manufacturing value compared to the FY2005 level (Komatsu Group manufacturing facilities in Japan)	Improve 1% over the previous	Achieved a 50.7% reduction in the amount of waste generated per unit of manufac- turing value compared to the FY2005 level (improvement of 8 point compared to the previous year)	Achieve a 10% reduction by FY2020 compared to the FY2010 level
Achieve a reduction of more than 50% by FY2015 in the amount of water used per unit of manufacturing value compared to FY2005 (Komatsu Group manufacturing facilities in Japan)	Improve 3% over the previous fiscal year	 Achieved a 67.5% reduction in the amount of water used per unit of manufactur- ing value compared to the FY2005 level (improvement of 4.2 point compared to the previous year) 	Achieve a 40% reduction in FY2020 compared to the FY2010 level

Implementation policies	Objectives for FY2015 Results for FY2015		Medium- and long-term objectives
substances including volatile organic compounds ("VOCs"), which constitute the majority of chemical substances released	substances		Achieve a 50% reduction compared to the FY2005 level
Undertake soil and groundwater remediation (Komatsu Group manufacturing facilities in Japan)	Continue the cleanup	In progress	Complete the cleanup work
Sequentially address each underground tank that has been in operation for 20 years or more (Komatsu Group manufactur- ing facilities in Japan)		No applicable underground tanks	Sequentially address each underground tank that has been in operation for 20 years or more
 Other Improve greenery rate by 20% or greater by FY2015 across the Komatsu Group. (Komatsu Group manufacturing facilities) 	Greenery Rate 20% or greater	Komatsu Group achieved a total rate of 20.2%	Continue the Greenery Rate 20% or greater

OProcurement and Logistics

Implementation policies	Objectives for FY2015	Results for FY2015	Medium- and long-term objectives
 Green procurement Promote improvements at suppliers through the establishment of environmental management systems ("EMSs") and by specifying matters that require environmental consideration 	Provide guidance and support to member companies of the Komatsu "Midori-kai" for acquiring integrated certification of their envi- ronmental management systems	All subject companies acquired certification for a total of 164 certified companies, and are promoting environmental management activities	Within three years, have newly admitted Komatsu "Midori-kai" admission com- pany masters attestation of environmental management systems (ISO 14001, Eco-stage, etc.)
 Environmental conservation in logistics Reduce CO₂ emissions per unit of cargo weight generated through shipping of products and components (Komatsu manufacturing facilities in Japan) (in the scope of revised Law concerning the Rational Use of Energy of Japan) 	weight (kg-CO ₂ /ton) by 27% com-	Reduced the basic unit of CO ₂ emissions from 26.3 to 21.4 kg-CO ₂ /ton, down 18.6% from its FY2006 level, but it was short of the goal. Increased in the ratio of domestic vessel usage for the Tohoku region since FY2011, and also in the ratio of railway usage, one prioritized area of improvement, since FY2014. Given a further 1.5% increase, the goal could have been attained, but the basic unit has increased 9.4% compared to the previous year under the influence of a worsening logistics environment in FY2015, that is, an increased distance per shipment (up. 38%) and a reduction in the cargo weight per shipment (down 11.2%) due to a narrowing volume of large-size machinery.	Reduce the basic unit of CO ₂ emissions (kg-CO ₂ /tno) from the shipment of pre- defined products and parts by 32% compared to its FY2006 level by 2020 as a new mich-term objective for FY2020 (tertiary plan). Apply this plan until a 27% reduction is achieved in the secondary plan, after which switch to the tertiary plan (14 Komatsu logistics facilities in Japan).
Ohifi ta anna af chirainn úth launa innana ta linnant	Promote modal shifts in shipping from trucks to domestic vessels or rail	 The total modal shift rate in FY2015 was 29.7% (+13.5% compared to FY2006: +5.8% by railway, +7.7% by domestic vessels) By proactively increasing the usage of domestic vessels in place of long-distance trucking to the north-east, which increased due to the Great Eastern Japan Earthquake Disaster after FY 2011. A higher rate of railway transport has been pursued as a prioritized area of improvement since FY2013. Ratio of modal shift over transport distances of 500 km or longer: 49.2% ⇒ 49.1% (-0.1%) 	Continue to promote modal shifts. Switch from long-distance trucking to domestic vessel shipment through modal shifts, enhancing the transporta- tion of products manufactured at Tochigi Plant to Shikoku and Kyushu on a prior- ity basis. Expand rail usage for Oyama, Koriyama and Awazu Plant compo- nents: engines, hydraulic equipment, transmission, etc.
Shift to means of shipping with low environmental impact	Shift to battery powered forklifts	 Forklifts used for in-plant logistic purposes have been shifted to hybrid and battery-powered models to lessen their environmental impact. In FY2015, the ratio of the number of hybrid and battery-powered forklifts rose to 51.5%, up 32.1% compared to its FY2006 level, after efforts to drive the installation of new Kornatsu battery-powered forklifts neach plant. (Ratio of the number of battery-powered forklifts: 46.1% in FY2014 ⇒ 51.5% (+5.4%) in FY2015) 	Set new mid-term objectives for PY2020. Replace engine-powered forklifts rated at 3 tons or less with new Komatsu bat- tery-powered forklifts to boost the ratio of the number of battery-powered fork- lifts to 75% or above in a continuing bid to cut environmental burdens. Aim to migrate all of forklifts rated at 3 tons or less to battery-powered models.
Measures for protecting biodiversity and reduction in wood used in packaging containers (Avoid excessive logging of trees and the risks of immigration and emigration of nonnative spe- cies in wood)	Reduction in the usage of wooden/ cardboard packaging containers Reduce the basic unit of usage per cargo weight (kg-CO ₂ /ton) by 10% compared to FY2010	 Efforts continued into FY2015 to cut packaging material requirements, mainly wooden materials, with a view to protect biodiversity. Amount of wood/cardboard used inFY2015: 4,692 tons Achieved a reduction by 24.8% compared to FY2010 	Set new mid-term objectives for FY2020. Improve the basic unit by 20% or more compared to FY2010. Continue cutting the basic unit of usage of wooden/cardboard packaging per cargo weight.
Strive to eliminate the procurement of new wrapping materials through promotion of returnable packaging containers.	Promote the returnability of pack- aging containers	Expanding scope of returnable general-purpose wooden packaging container usage, which had been pursued on a priority basis, has helped cut wooden packaging requirements. The ratios of prioritized improvement parts returnability have improved compared to their FY2010 levels as follows: -Ratio of packaging case returnability for spares: 6.0% ⇒ 52.1% (+46.1%) -Ratio of general-purpose packaging case returnability for CKD parts: 33.1% ⇒ 54.9% (+21.8%)	Proceed with further improvement efforts to achieve "zero" procurement of new packaging materials as a prioritized Continue improvement in the returnabil- ity ratio of containers designated for CKD parts. Further improve the returnable rate of general-purpose containers for CKD/ spare parts. Pursue returnability of item-packaging inner cases for spares as well.
Drive better transport efficiency	Increase the size of shipped units to large lots	• Ratio of CKD plant vanning: $99.4\% \Rightarrow 99.8\%$ (+0.4%). • Ratio of spares plant vanning: $99.3\% \Rightarrow 99.2\%$ (-0.1%).	Prioritized improvement activities come to completion as upsized transportation units resulting from an expanding scope of containenzed transportation have reached a predefined management maintenance and management level.
Cut transportation distances	Continue improving to reduce the distance per shipment by utilizing nearby ports	Exportation of construction machinery manufactured at Awazu Plant Kanazawa Port utilization for exportation of construction machinery manufactured at Awazu Plant for FY2015: 44.6% (up 30.1% compared to the 2006 level, attain- ing 50% of the mid-term goal Exportation of presses manufactured at Kanazawa Plant Kanazawa Port utilization for exportation of presses manufactured at Kanazawa Plant for FY2015: 59% (quantity basis), 91.4% (weight basis), Kanazawa port utilization for FY2015 rose 15% compared to the previous year level after modifi- cations to medium-sized presses, advancing to 83%. Exportation of construction machinery manufactured at Ibaraki Plant Hilachinaka Port utilization for FY2015 was 97.0% against the mid-term goal of 95%, attaining and keeping up the mid-term plan.	tance by utilizing near-by ports. A target usage rate has been achieved for Hitachinaka Port. It will be main- tained and managed at 95% at least from now on. Target usage rate (products) for Kanazawa Port. Set a new mid-term objective of 57% for FY2020 in pursuit
 From 2011 Implement environmental conservation activities in global logistics (both national and international) Improve CO₂ emission per cargo weight of shipping products and parts. (10 major overseas plants) 	The basic unit of CO ₂ emissions per cargo weight (kg-CO ₂ /ton) has improved 8% compared to its FY2011 level.	Implementation of monthly tracking of data for CO ₂ produced by shipment in 10 major plants in the Americas (2 in US, 1 in Brazil), EU (1 in UK, 1 in Germany) China (3), and Asia (1 in Indonesia, 1 in Thailand). Implementation of the basic unit of CO ₂ emissions per cargo weight Up 2.6% compared to the PY2011 level, short of the goal (worsened) and up +2.5% compared to the previous year level. The basic unit of CO ₂ emissions has worsened worsened from 65.5 to 5.7 (Je,CO ₂ /ron) after increases in trucking distance caused by shipment destination changes (trucking distance per transaction).	Committed to the 2020 mid-term goal of improving the basic unit of CO ₂ emis- sions per cargo weight in the logistics of products and parts by 13% (10 major overseas Komatsu Group Plants).

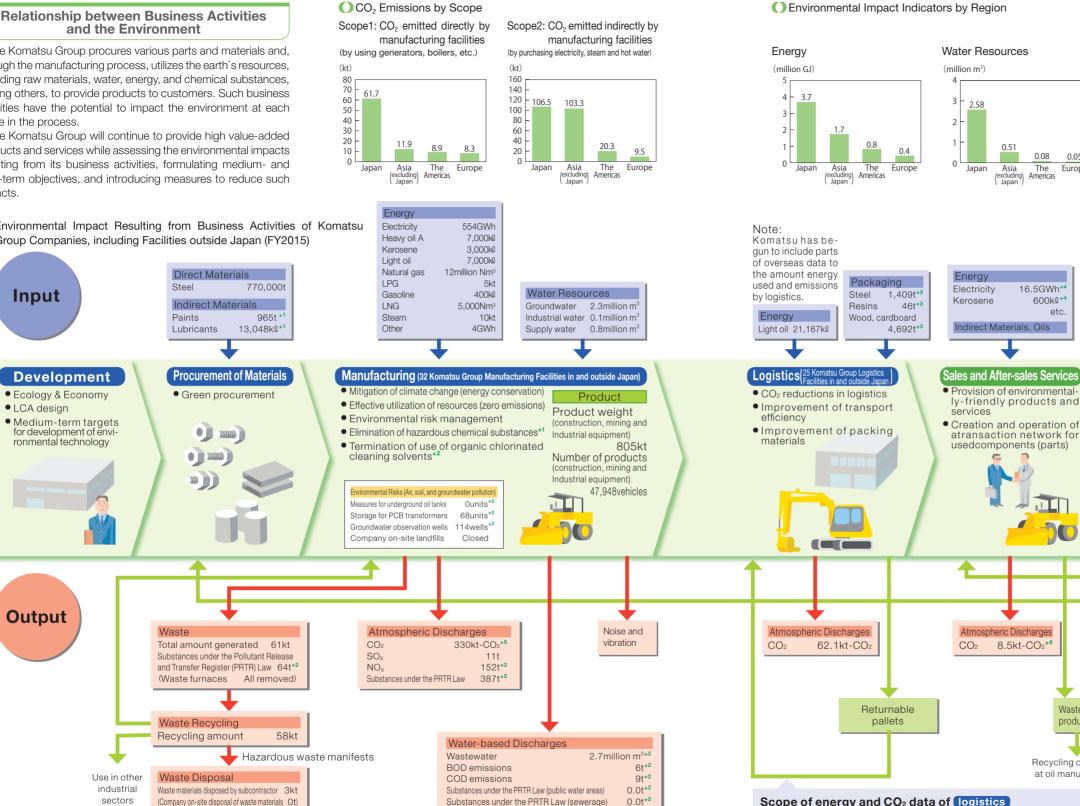
O Sales and After-sales Services

Implementation policies	Objectives for FY2015	Results for FY2015	Medium- and long-term objectives
Encourage Komatsu Group sales agencies and rental com-	Enhance awareness of the environ- ment through education and training based on the Group's environmental guidelines	 Carried out activities for improvement through guidance provided during onsite visits to total 57 sites[§]-Regularly issued the Safety and Environment Newsletter (24 editions published vearly) 	Support environmental risk reduction activities by Komatsu Group sales agencies and rental companies in Japan based on the Group's environ- mental guidelines

Relationship between Business Activities and the Environment

The Komatsu Group procures various parts and materials and. through the manufacturing process, utilizes the earth's resources. including raw materials, water, energy, and chemical substances, among others, to provide products to customers. Such business activities have the potential to impact the environment at each stage in the process.

The Komatsu Group will continue to provide high value-added products and services while assessing the environmental impacts. resulting from its business activities, formulating medium- and long-term objectives, and introducing measures to reduce such impacts.

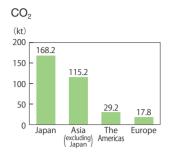

Input

• LCA design

Output

CEnvironmental Impact Resulting from Business Activities of Komatsu Group Companies, including Facilities outside Japan (FY2015)

CO₂ emissions: Calculated by multiplying the electric power, heavy oil, etc. consumed (see Energy section of Input column) by the CO₂ emission coefficient (according to the Greenhouse Gas Emissions Calculation - Reporting Manual of the Ministry of the Environment based on the Act on Promotion of Global Warming Countermeasures) (Domestic electricity emission factor is 0.384kg/kWh.)


SOx emissions: Calculated by multiplying the "density" and the "S content by percentage" (based on element tables of suppliers) by the amounts of heavy oil, kerosene, light oil, and coke used.

NOx emissions: Calculated by multiplying the "nitrogen oxide emissions units" (obtained at each Komatsu facility) by the amounts of heavy oil, kerosene, light oil, natural gas, and LPG used.

Emissions and transfer of substances covered by the PRTR Law: Calculated by the "content ratio of specific chemical substances" contained in indirect materials multiplied by the "discharge or transfer rate." This calculation is based on the PRTR Law, which was designed to mandate the disclosure of the amount of specific chemical substances released into the environment to promote the management of such substances.

Scope of energy and CO₂ data of logistics

- Komatsu (parent company) facilities, specifically the following fourteen plants The Awazu Plant, the Osaka Plant, the Rokko Plant, the Ibaraki Plant, the Tochigi Plant, the Kanazawa Plant, the Shonan Plant, the Oya-ma Plant, the Koriyma Plant, and Komatsu Logistics Corp (Parts Logistics Division) (The Kanto Parts Distribution Center, the Kanasi Parts Distribution Center, the Awazu Parts Distribution Center, the Hokkaido Parts Distribution Center, the Kyusyu Parts Distribution Center).
- Komatsu Group manufacturing facilities in Japan, specifically the above fourteen plants and the following one business unit Komatsu Castex Ltd.
- Komatsu Group manufacturing facilities outside Japan, specifically the following ten plants Komatsu America Corp. [Chattanooga Manufacturing Operation], [Peoria Manufacturing Operation], Komatsu do Brasil Ltda., Komatsu UK Ltd., Komatsu Mining Germany GmbH, Komatsu Shantui Construction Machinery Co., Ltd., Komatsu (Changzhou) Construction Machinery Corporation, Komatsu (Changzhou) Foundry Corp., Komatsu (Shandong) Construction Machinery Corp. PT Komatsu Indonesia Tbk, Bangkok Komatsu Co., Ltd.

0.51

0.08

The

16.5GWh*

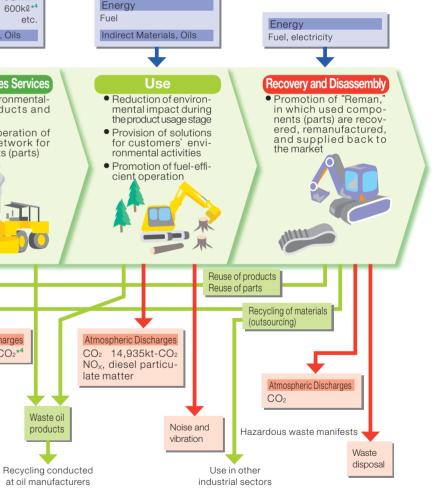
neric Discharges

Waste oil

products

8.5kt-CO2*4

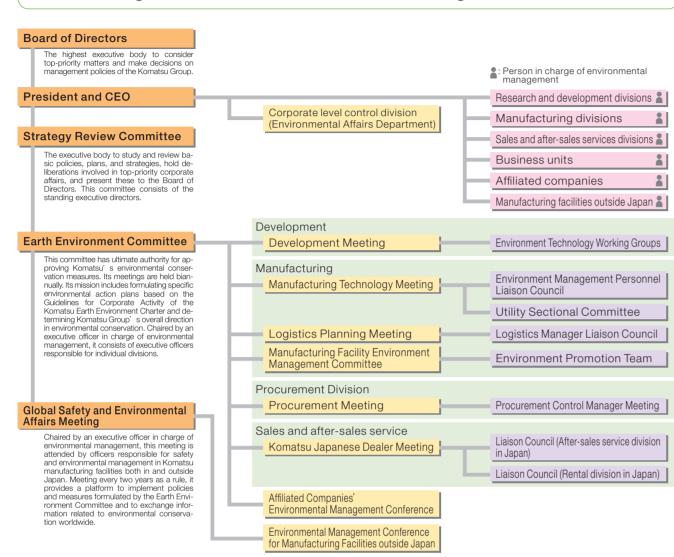
600kl


etc

Asia The (excluding) Americas

0.05

Europe



- Coverage of Data
- *1:8 Komatsu manufacturing facilities in Japan *2: 12 Komatsu Group manufacturing facili-
- ties in Japan
- *3: Logistics of business sites in Japan However, this excludes data from the Awazu Distribution Center, Hokkaido Parts Distribution Center, and Kyushu Parts Distribution Center 4: Sales agencies and rental companies in
- Japan (Komatsu Construction Equipment Sales and Service Japan td., Komatsu Rental Ltd. and Komatsu Forklift Japan Ltd.) were added
- : Including the usage of forklifts in the premises of a factory

Environmental Report Digest 2016 (10

Organizational Chart of the Environmental Management Structure

Acquiring ISO14001

Komatsu has implemented a Group-wide initiative to acquire ISO14001 certification, an international standard for environmental management systems. The objective is to enhance management quality by strengthening systematic steps towards environmental conservation.

Since 1997, several manufacturing facilities both inside Japan and abroad received certification. In FY2005, the four plants belonging to Komatsu Ltd. (the parent company), the Awazu, Osaka, Mooka, and Oyama Plants, acquired integrated certification. As the second step, in FY2007 Komatsu added its major affiliates in Japan and yet-to-be-certified non-manufacturing facilities – notably the Head Office – to the above four plants, with integrated certification attained by the Group in Japan in May 2008.

Upon completing the March 2012 recertification, the KOMATSU Way Global Institute and Komatsu NTC Ltd. were included in the integrated certification. The Group conducted the recertification qualification again in March 2015, and will continue to work on improving the quality of management in Japan.

In FY2013 "Komatsu (Shandong) Construction Machinery Corp.", "Komatsu Manufacturing Rus. LLC", and "Hensley Lingfeng Co., Ltd (China)" acquired certification, and in FY2014 "Cabtec (Thailand)" acquired certification as well.

In FY2015, Yida Nippei Tool Corporation (YNC) also acquired certification and we were able to achieve the goal of having 100% of our overseas production facilities certified.

ISO14001 Integrated Certification

Environmental Inspection

Environmental Inspection of affiliate companies in Thailand

Since 2010, we have been conducting compliance risk inspections of our overseas affiliate companies.

In 2015, we conducted an inspection of BKC in Thailand. Komatsu's corporate headquarters department created a check sheet based on

Environmental Inspection at BKC

the local environmental laws, and with the support of the person in charge of environmental matters for the main plant(KCX) in Japan, we conducted an inspection of the conditions of environmental activities and the compliance to legal regulations. In this way, we are working to reduce the environmental risks and improve the level of the on-site person in charge of environmental issues and of the auditor.

We will continue to do follow-ups to the inspection as well as conduct environmental inspections of affiliate companies in other regions.

O Past Environment Inspections

2007	China
2008	—
2009	Thailand and Indonesia
2010	India
2011	Brazil
2012	Russia and Czech Republic
2013	United States
2014	United States and Brazil
2015	Thailand

Promoting Environmental Activities at Group Sales and Rental Agencies

Komatsu supports the environmental activities of forklift sales agencies as well as construction machinery and rental companies through education and guidance. The "Environmental

Guidelines for Sales

Agencies" deployed for

sales and rental agen-

cies comprises of

Environment Education for Dealer Association New Employee Education

guidelines and standards pertaining to environmental issues that are of direct relevance to operations at sales agencies and rental companies (such as waste treatment, waste-oil treatment, oil-and-grease management, and treatment of wastewater from vehicle washing).

Komatsu works jointly with their counterparts at various companies by visiting the sites of various sales agencies and rental companies to ensure compliance with the "Environmental Guidelines for Sales Agencies" as well as inspecting sites, realities, and actual products to implement support activities such as supervising the sites and proposing remedial actions that are tailored to each location (implemented at a total of 57 locations in FY2015). Also, the "Safety and Environment Newsletter", published for the purpose of providing information related to environment for sales agencies and rental companies, reached its 10th anniversary of publication in 2015 (first issue released in November 2005) and has been effective in raising awareness levels at the sales points.

Furthermore, we are implementing a waste management system at the sales agencies in order to promote appropriate management of industrial waste. In addition to management of the electronic manifest, by managing disposal service contract and permits in a unified system, we are working on decreasing the number of man-hours used, as well as providing a centralized, effective waste management.

Komatsu Construction Equipment Sales has already put the system in place, and we are planning to gradually introduce this system in the other sales and rental agencies.

As a result of the above activities, environmental awareness is higher at sales agencies and rental companies, leading to various improvement activities.

Setting Mid- and Long-Term Objectives

While long-term objectives for CO_2 reduction was being set for the world at COP21 in 2015, in order to contribute to the climate change measures as Komatsu, we set medium- and long-term objectives (2020, 2030) and determined to begin in FY2016 to take action based on these objectives.

In looking at CO_2 generated in the life cycle of construction equipment products, we found that CO_2 emissions during construction equipment use makes up approximately 90% of total emissions. Therefore, this time we are working on reducing CO_2 emissions over the entire life cycle of construction equipment, and have set fuel efficiency goals for construction equipment products that are to be achieved by 2030.

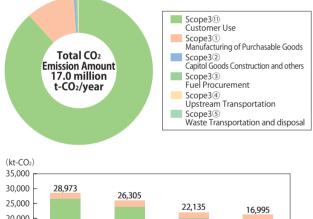
In terms of CO₂ reduction for domestic production—considering the electricity situation that resulted from the Great Eastern Japan Earthquake in 2011—we have set increasingly stringent objectives. Also, for production, in addition to the targets set for CO₂ reduction, we set targets for our domestic and overseas factories regarding the amounts of waste generated and the amounts of water input, in order to promote efficient use of resources. And we set medium-term targets up to 2030 for CO₂ in logistics.

Area	Object	Application Index	Base	New Objectives (Reduction Rate)		
				Year	2020年	2030年
	<u> </u>	Japan	Improvement rate per unit of production	2000	57%	65%
	CO ₂	Overseas	Improvement rate per unit of production	2010	32%	40%
Production	Waste	Japan	Improvement rate per unit of production	2010	10%	20%
ıction	vvasie	Overseas	Improvement rate per unit of production	2010	10%	20%
	Water	Japan	Improvement rate per unit of production	2010	40%	50%
		Overseas	Improvement rate per unit of production	2010	10%	20%
Logi	CO ₂	Japan	Improvement rate per unit of logistics	2006	32%	39%
stics		Overseas	Improvement rate per unit of logistics	2011	13%	22%
Cons Machine	CO2 CO2 CO2 CO2 CO2 CO2 CO2 Normal Hydraulic Excavator Hydraulic Excavator Excavator Hydraulic Excavator Hydraulic Excavator Reduction F			40%	45%	
Construction Machinery Products		Hydraulic Excavator	Reduction Rate	2007	20%	25%

Amount of CO₂ Emmissions by Scope 3

From actual data gathered by KOMTRAX, Komatsu has gained perspective on the amount of CO₂ emissions (Scope 3 Category 11) produced by our products manufactured in FY2015 in operation world-wide.

The calculation was performed as follows.


[Calculation of Emissions from Customer Use]

- (1) Calculate the following by each model
- CO₂ emissions over the life of each model
- = (FY2015 Production Volume)×(Fuel Consumption; L/kWh) × (Engine Output; kW)
- \times (Engine Life; as product life; h)
- \times (CO₂ Conversion Factor)

(2) Calculated for each model in (1) above, Total these values

*For models available to collect fuel consumption, KOM-TRAX collected the actual values of fuel consumption and operating time from representative models of each size. We back calculated data from development for other models.

For others, including the 14 remaining categories, the general CO_2 emissions was calculated. The result is shown in the pie chart below.

*1: LCA is the environmental impact assessment method for individual products at each stage, from manufacture, transportation, sale, use, disposal, to reuse *2: Scope1 is direct CO₂ emissions by operator (ex: private power generation) *3: Scope2 is indirect CO₂ emissions by operator (ex: power purchase)

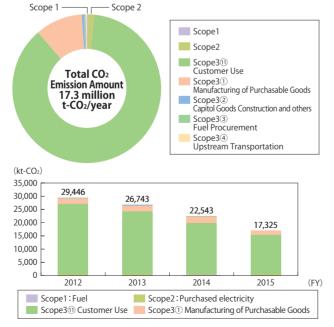
*3: Scope2 is indirect CO₂ emissions by operator (ex: power purchase)
 *4: Scope3 is CO₂ emissions by operator from supply chain (ex: emissions of product during operation, emissions from suppliers, transportation, business trips and commuting)

O Amount of CO₂ Emissions Data by Scope 3

Category	Rate (%)	Summary Date (t-CO ₂)
Scope3 (11) Customer Use	87.9	14,935
Scope3 (1) Manufacturing of Purchasable Goods	10.3	1,749
Scope3 (2) Capital Goods Construction and others	0.6	101
Scope3 (3) Fuel Procurement	0.4	71
Scope3 (4) Upstream Transportation disposal	0.1	15
Scope3 (5) Waste Transportation	0.0	6
Scope3 (6) Business Trips	0.2	26
Scope3 (7) Commuting	0.1	17
Scope3 (8) Upstream Leased Assets Operation	0.0	0
Scope3 (9) Downstream Transportation	0.2	37
Scope3 (10) Processing Sold Products	0.0	0
Scope3 (12) Product disposal	0.2	39
Scope3 (13) Downstream Leased Assets Operation	—	-
Scope3 (14) Franchise Member Companies	0.0	0
Scope3 (15) Investment Management	0.0	0
Total CO ₂ Emission Amount (t-CO ₂ /year)	100.0	16,995

- Although it is calculating in the total range of domestic and an overseas in calculation of each category, the category (4) and (5) is calculating only domestic data. The category (13) is included in category (11). Moreover, presumption of a category (3) goes into overseas data in part.

As evident from the results above, emissions during product use makes up approximately 90% of total emissions.


From this, we can see that fuel-efficient products have a significant effect on reducing CO₂ emissions.

Komatsu is committed to developing hybrid construction machinery (improving fuel efficiency by 25%) and DANTOTSU products (over 10% improvement in fuel efficiency) and accelerating the pace of the ICT-based SMART CONSTRUCTION.

In addition, the result of the understanding in the LCA*1 (Life Cycle Assessment) is the pie chart below.

≪Reference≫

Pie Chart of Scope1, 2, 3

Mitigating Climate Change

Mitigating Climate Change through Products and Services

Tier4 Final Compliant Models Released

In 2015, Komatsu released one vehicle model after another that greatly reduce nitrogen oxide (NOx) and particulate matter (PM) emissions that meet Japanese (Emissions from Non-Road Special Motor Vehicles 2014 Standards), North American (EPA Tier4 Final), and European (EU Stage IV) emissions controls for Hydraulic Excavators, Bulldozers and Wheel Loaders. These models are equipped with newly developed next-generation engines that result in construction machinery that are clean and fuel efficient, with excellent durability and reliability. Below are some examples.

Large-Sized Hydraulic Excavator "PC300(LC)-11/PC350(LC)-11"

With "Quality and Reliability" as the foundation, Komatsu has pursued ever higher levels of quality in environmental, safety and ICT aspects, and released the "PC300(LC)-11/PC350(LC)-11" model to the market, which meets the Non-Road Special Vehicles 2014 Standards. Equipped with the newly developed next-generation engine, this model makes further advances in being clean and efficient.

Fuel consumption rate has been decreased by approximately 5% compared to the previous model(PC300-10).

PC300-11

	Main Specifications							
	Item	Unit	PC300-11	PC300LC-11	PC350-11	PC350LC-11		
	Machine Mass	kg	31,500	32,300	33,700	34,500		
	Net Engine Rated Output	kW/ min ^{.1}	192/1950	192/1950	192/1950	192/1950		

Hybrid Hydraulic Excavator "HB335(LC)-3/HB365(LC)-3"

For the Hybrid Hydraulic Excavator, the "HB335(LC)-3/ HB365(LC)-3" was released as the model which meets the Non-Road Special Vehicle Standards 2014. By using the Fan-Clutch System and a total computerized control of the engine/hydraulic/ hybrid system, we were able to achieve a large reduction in fuel consumption of approximately 22% compared to the conventional model (PC300-10), without compromising any operational capabilities.

HB335-3

Main Specifications

		outionio			
Item	Unit	HB335-3	HB335LC-3	HB365-3	HB365LC-3
Machine Mass	kg	32,000	32,800	34,200	35,000
Net Engine Rated Output	kW/ min ⁻¹	201/1950	201/1950	201/1950	201/1950

Bulldozer "D85EX/PX-18"

Main Specifications

By incorporating the Komatsu Diesel Particulate Filter (KDPF) and Selective Catalytic Reduction (SCR), the D85EX-18 significantly reduced the emission of nitrogen oxide (NOx) and particulate matter (PM) to meet the North American EPA Exhaust Emission Tier4 Final Regulations (Tier4 Final), the European Stage IV Exhaust Emission Regulations, and Japan's Emissions from Non-Road Special Motor Vehicles 2014 Standards.

With the Sigmadozer, operation volume went up by 15% and fuel efficiency increased by 20% through the 5% fuel improvement of the automatic shift transmission and engine.

D85EX-18 Sigmadozer

Item	Unit	D85-18(North America Specifications)
Machine Mass	kg	30,120(EX)/28,550(PX)
Net Engine Rated Output	kW/min-1	197/1900

Mitigating Climate Change

Wheel Loader "WA380-8" *1

The WA380-8, by incorporating the Komatsu Diesel Particulate Filter (KDPF) and Selective Catalytic Reduction (SCR), significantly reduced the emission of nitrogen oxide (NOx) and particulate matter (PM) to meet the North American EPA Exhaust Emission Tier4 Final Regulations (Tier4 Final), the European Stage IV Exhaust Emission Regulations, and Japan's Emissions from Non-Road Special Motor Vehicles 2014 Standards.

Fuel consumption rate decreased by approximately 3% compared to the previous model.

Main Specifications

*1: For North America, Europe, and Japan

Item	Unit	WA380-8(North America Specifications)
Machine Mass	kg	18,455
Net Engine Rated Output	kW/min-1	142/2100

The ICT Construction Equipment Expansion Series

The SMART CONSTRUCTION initiative unveiled in January 2015 makes use of ICT (Information Communication Technology) for automatic control of the bulldozer's blade or for semi automatic control of the hydraulic excavator by measuring terrain data and comparing 3D design data with information on the operating equipment's location. This dramatically improves the efficiency of construction, which results in reducing the fuel consumption of construction (decrease in CO_2 emissions). In-house testing results show a decrease in fuel consumption of approximately 30% for the ICT Hydraulic Excavator "PC200i-10" and approximately 25% for the ICT Bulldozer "D61PXi -23".

The representative models of ICT construction equipment to be used in the SMART CONSTRUCTION initiative unveiled in 2015 as follows.

ICT Hydraulic Excavator "PC128USi-10" *1

This machine is an ICT Hydraulic Excavator series expansion model which follows the Medium-sized ICT Hydraulic Excavator "PC200i-10" introduced in October 2014.

This excavator is like the "US Series" hydraulic excavator with rearward minimum-swing-radius, mounted with the same ICT components as the "PC200i-10," and will be the main machine to introduce computer-aided construction to a broad range of construction sites such as road construction for small-scale developments, plumbing construction, and small-scale land development construction.

*1: For Japan (Introduction starting from Komatsu Rental and Komatsu Group's rental companies.)

Main Specifications

Item	Unit	PC128USi-10		
Machine Mass	kg	13,300		
Net Engine Rated Output	kW/min-1	69.7/2050		

Bulldozer "D65PXi-18"

The D65PXi-18, by incorporating the Komatsu Diesel Particulate Filter (KDPF) and the Selective Catalytic Reduction (SCR), significantly reduced the emission of nitrogen oxide (NOx) and particulate matter (PM) to meet the North American EPA Exhaust Emission Tier4 Final Regulations (Tier4 Final), the European Stage IV Exhaust Emission Regulations, and Japan's Emissions from Non-Road Special Motor Vehicles 2014 Standards.

By combining cutting edge ICT and vehicle control technology, this model is equipped with both the automatic blade control for heavy excavation and land preparation work, and the mapping display capabilities to verify the work progress.

D65PXi-18

OMain Specifications					
	Item	Unit	D65PXi-18(North America Specifications)		
	Machine Mass	kg	22,600		
	Net Engine Rated Output	kW/min-1	162/1950		

Monitor displaying work conditions

Automatic Blade Control

New Model Battery-Powered Forklift Expansion Series "FE30-1"

The "FE25-1", which was introduced to the market in January 2014, is an innovative battery-powered forklift that combines engine-powered forklift equivalent outdoor capacity (waterproof and dust-proof qualities) and ease of use (rehydration is unnecessary and it has rapid recharging capabilities, recharging up to 80% over a one-hour lunch break) with the environment-friendliness and economy of a battery-powered forklift.

As an expansion of this series, the "FE30-1" was released in September 2015. This model, with 1/3 the CO₂ emission rate^{*1} compared to the previous diesel engine powered forklift, will greatly contribute to CO₂ reduction. In addition, KOMTRAX "makes visible" the battery charge progress and the electricity consumption, while the large-size color multi-monitor makes it possible to check environment related information such as the amount of electrical charge and the cumulative amount of CO₂ emissions^{*2}.

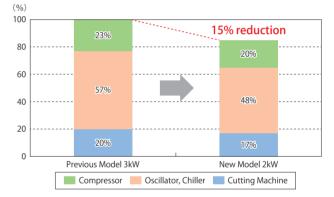
*1: Comparison with Komatsu's 3t Diesel Engine Powered Forklift based on in-house calculations.

*2: Cumulative amount of CO₂ emissions was calculated using emission coefficient set for conversion.

FE30-1

Market Introduction of the 3D Laser Cutting Machine "TLH-K Series"

Komatsu Industries Corporation developed the three dimensional laser cutting machine "TKH-K Series" with improved


productivity and energy efficiency. By equipping this machine with the Komatsu Fiber Laser Oscillator having high quality laser beam, it has become possible to achieve a productivity rate with 2kW that is equivalent to previous 3kW rates, which helps users conserve energy.

We will continue with product development of laser cutting machines that take the environment into consideration.

TLH-415K30FK

C Reduction in electricity consumption for cutting (Hot-press Material sheet thickness: 1.2mm, Cutting Speed: 27m/min)

Gas Consumption Reducing Technology of Excimer Laser for Semiconductor Lithography Equipment

GIGAPHOTON, Inc., a major manufacturer of light source for semiconductor lithography equipment, is continuously working on finding a solution to the supply shortage of rare gases such as neon and helium, a serious concern for the semiconductor industry.

First, as a solution for neon gas, GIGAPHOTON Inc. developed "eTGM", a technology capable of reducing neon gas consumption by 50%.

Next, as a solution for helium gas, GIGAPHO-TON, Inc. developed "helium-free" technology which will eliminate the consumption of helium during operation by replacing helium with nitrogen.

Latest excimer laser GT64A

Mitigating Climate Change

Initiatives to Mitigate Climate Change in Business Operations

Reducing CO₂ Emissions in Manufacturing Operations

As a part of our efforts to mitigate climate change, Komatsu set more aggressive objectives in FY2013 for the amount of electricity, fuel gas, fuel oil, and other types of energy used in manufacturing operations, using CO_2 emissions per unit of manufacturing value as the indicator.

In 2010, to contribute to Post Kyoto Protocol climate change measures, we set a goal that by 2015 we would reduce CO_2 emission levels by 40% compared to the levels in 1990. Since then however, in light of the electricity supply crunch that followed the Great East Japan Earthquake, activities to further reduce power consumption were started with an ambitious goal of a 54% reduction compared to FY2000 levels.

As a result of the energy-saving activities undertaken—such as the establishment and start of high efficiency lines and removal of old lines, along with the use of renewable energy and the popularization of various production improvements revolving around the "Company-wide Power Reduction Project Team" established in May 2012—the indicator of CO_2 emissions per unit of manufacturing value was reduced by 42.7% compared to FY2000 levels. In addition, the ratio of renewable energy for in-house power generation was 13.4%, an increase of 1.3 times the previous year's amount.

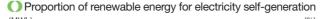
 CO_2 emission at Komatsu's overseas manufacturing sites have also been reduced by 33.2% compared to FY2005 as a result of fuel conversion and lateral spread of improvement examples from Japanese plants.

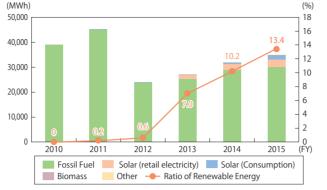
From FY2016, aiming for the achievement of new mid-term goals, we will promote the reduction in CO_2 emissions index numbers by updating buildings that are over 40 years old to buildings that incorporate the newest energy-conserving technology, and by making small but steady improvements on job sites.

CO₂ emissions (Japan)



Manufacturing value : Total production cost excluding direct material cost, other facilities' components, and procured components




CO₂ Emissions (Overseas)

CO₂ emissions (Komatsu Group manufacturing value or each site, (compared to F12005)

CO2 emission basic unit (compared to FY2005)

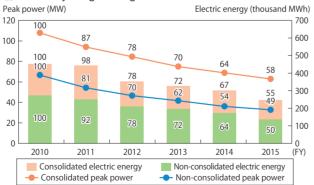
Halving Electricity Usage Project

Halving Electricity Usage Project

As part of its continuing effort to reduce environmental burdens by cutting CO_2 emissions, Komatsu has decided to accelerate its pace of power usage reduction by boosting productivity drastically in anticipation of lingering nationwide power shortages in 2012 and after since their outbreaks in the service areas of Tokyo Electric Power Company, Inc. and Tohoku Electric Power Company, Inc. in the wake of the Great East Japan Earthquake in 2011.

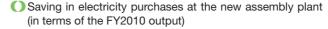
Based on the in-depth analysis of electricity usage status since then, Komatsu's own domestic manufacturing facilities have worked towards achieving its new goal of cutting the peak power usage by 50% compared to its summer 2010 level to reduce environmental burdens.

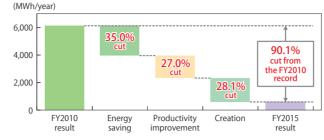
Conceptual Approaches to Reducing Electricity Usage


Komatsu is committed to three basic concepts of reducing electricity usage as follows:

- (1) Visualize electricity usage to eliminate waste
- (2) Production reform
- (3) Use alternative energy sources

(1) Activity Results (Domestic Manufacturing Facilities)


In addition to the peak power usage, we were also able to achieve Komatsu's own target of 50% reduction in electricity usage. Going forward, we will continue with these types of activities, as well as pursue further actions that will lead to even more electricity usage reduction.


C Electricity usage change forecasts

(2) Status of electricity usage reductions at a new assembly shop at Awazu Plant

With impetus mainly from a full launch of biomass power generation scheduled for FY2015, electricity usage reductions at a new assembly shop at Awazu Plant commissioned into service in 2014 was reduced by over 90% as planned.

Reduction CO₂ Emissions in Logistics

Lower CO₂ Emissions for Global Transport

(Basic Unit of CO₂ Emissions per Cargo Weight: kg-CO₂/ton)

In 2011, Komatsu began improving its assessment of CO_2 emissions from logistics operations for its 10 major international business locations.

Combined with the improvements that were started in domestic locations from 2006, we have now implemented improvements in logistic operations on a globally consolidated basis at all 25 business locations.

Domestic improvements include decreasing transportation distance through efficient use of the Kanazawa and Hitachi Naka Ports, and the expansion of coastal shipping to handle the long distance transport to the Tohoku area, which has been increasing since 2011. From FY2014, the expansion of railway use has been added to priority action items to improve the modal shift trend. As a result of continuing these initiatives in FY2015, we achieved a 2.6% improvement in basic units compared to the previous year. However, domestic CO_2 emissions basic units worsened by 9.4% overall, largely due to an increase in average transport distance resulting from the decrease in overseas export loads and large model loads, as well as the basic unit fluctuation affected by the decrease in logistics efficiency.

In overseas, the U.S. alone showed a 1.5% improvements in logistics efficiency in basic units compared to the previous year, while the overall overseas results showed basic units of CO_2 emissions deteriorating by 2.5%, being greatly affected by the load reduction due to the major production decrease in China and Asia.

Global Shipment CO₂ Emissions Volume and CO₂ Emissions Per Cargo Weight (t-CO₂) (10Kq-CO₂/t)


CO₂ Improvement for Domestic Transport (Increase in Coastal Port Usage Rate)

(1) Increase in Kanazawa Port Usage Rate (Condition of Press Products)

In order to decrease domestic land transport distance, we are working on improving the usage rate of the local port—Kanazawa Port—for export products produced at the Awazu and Kanazawa plants in the Hokuriku district.

In addition to the usual construction equipment products produced at the Awazu plant, from FY2014, the press products produced at the Kanazawa plant are also being managed and improved by using the Kanazawa Port usage rate as an index.

In FY2015, the Kanazawa Port usage rate for press products was greatly improved.

Kanazawa Port Usage Rate

- 1) Medium-size Press: Use of RORO ships
- 2) Large-size/Medium-size Press: Use of conventional ship charter by combining loads
- 3) In September 2015, the full operation of Murphy Service started for the first time on the Japan Sea side of Honshu, and also for the first time a large-size RORO ship called at Kanazawa port. This meant that if the right load size could be arranged, a large-size RORO ships could be used instead of the conventional ships.

(At the first time port call of the large-size RORO ship 1,700 tons of Komatsu's large-size press was sent out to North America and Mexico.)

Press Units being loaded onboard

Loading onboard

- (2) Effects of the Kanazawa Port Usage Rate Improving (compared to FY2014)
- Reduction in land transport by truck trailer shipment: 350km/ trip (compared to use of Kobe Port)
- Improvement in Basic Unit of CO₂ Emissions per Cargo Weight (kg-CO₂/ton): 5.9⇒4.4 (△24.5%)
- 3) Reduction in Total CO₂: riangle25 (t-CO₂/year)

CO₂ Improvement in Overseas Transport (Use of Natural Gas Truck/Trailer)

At BKC(Thailand), a part of Komatsu's overseas group companies, the use of low environmental impact transport vehicles

called NGVs (Natural Gas Vehicle) has become increasingly pervasive, with the NGV usage rate increasing to 51.1%. The resulting CO_2 reduction has reached 282t- CO_2 cumulatively (FY2012 ~ FY2015).

NGV Truck (Natural Gas Vehicle)

Promoting Recycling

Promoting the Reman Remanufacturing Business

In our Reman business, the Komatsu Group remanufactures used engines, transmissions, and other key components (parts) of construction and mining equipment into "remanned" components that have the same high quality as newly manufactured components. We then put these components back on the market. The Group is promoting the Reman business at 12 Reman Centers around the world.

Promoting the Reman Business to the World

Reman, an abbreviation for remanufacturing, offers the following advantages to customers:

- Quality and performance that is the same as new componentsLower cost for "remanned" components
- Reduced idle time for construction equipment because of adequate inventory of "remanned" components
- Resource conservation and waste reduction through reuse and recycling of components.

As the global center, Komatsu established PT Komatsu Reman Indonesia (KRI), which supplies parts, such as engines and transmissions for large-size construction machinery, and PT Komatsu Indonesia (KI), which supplies hydraulic cylinders. Komatsu also established another global center, Komatsu Reman Center Chile (KRCC), which provides components for electric dump trucks.

Additionally, Komatsu established PT KOMATSU REMANU-FACTURING ASIA (KRA) in Indonesia to recycle all components of large-size construction machinery exclusively for the Indonesian market. For countries that are not part of our global supply chains (China, Russia, India and Brazil), we have established individual Reman Centers, and in April 2015 the 12th Reman Center was established in Myanmar.

The Myanmar (KMM) Reman Center established in April 2015

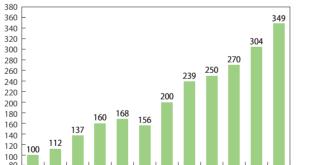
Reman Factories and Centers map

Providing Reman-related Information

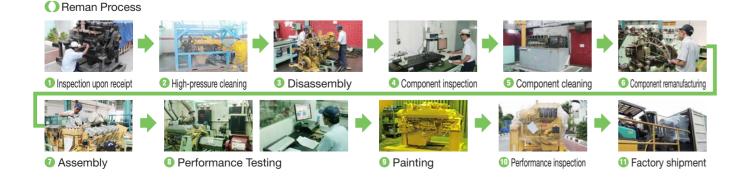
The Komatsu Group has set up "Reman-Net" as a network for Komatsu Reman Centers around the world. The Group is actively using this network to develop Reman operations for reuse and recycling of components at the global level.

IC tags and two-dimensional bar codes are used to manage each item's remanufacturing history, and to track quality and durability information. This important information is reported to the Group, to help develop components with optimal service life.

Future Steps


To further increase the reuse rate of used components, the Komatsu Group is reducing the number of disposed parts by: • Developing parts for remanufacturing, oversized parts, etc

 Developing recycling-related technologies (assessment and measurement for reuse, remanufacturing worn-out parts, cleaning, heat treatment, etc.)


to reduce waste components, and thereby further increase reuse and recycling activities.

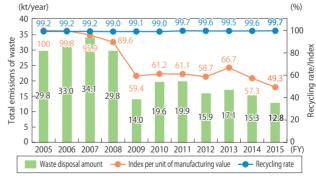
Changes in Reman Sales (base FY2004 = 100)

index(%)

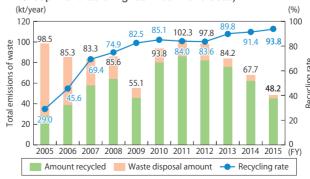
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 (FY)

Effective Utilization of Resources in Manufacturing Operations (Waste)

In tandem with reducing the amount of waste produced during manufacturing operations, Komatsu is working on "zero emissions" activities, which is the use of waste materials as resources. Starting in FY2011, we set new mid-term goals for the recycling rate and for the amount of waste generated per unit in the manufacturing operations in Japan, and we are working toward those goals.


For the manufacturing operations in Japan, the definition of "zero emissions" was set at a target recycling rate of above 99.5% to raise the level of recycling. The recycling rate for the manufacturing operations in Japan for FY2015 was 99.7%, achieving the goal (over 99.5%) ahead of schedule for 5 years in a row.

Also, in terms of the recycling rate, the overseas manufacturing facilities have also set a mid-term goal of a target rate of over 95%, and have been promoting the effective utilization of waste materials. The recycle rate for overseas manufacturing facilities has increased up to 93.7% in FY2015.


For the manufacturing operation in Japan, Komatsu decided to reduce the amount of waste materials generated per unit of manufacturing value in FY2015 by over 20%, compared to the FY2005 level. As a result of strict adherence to the separation of waste materials and increased conversion of waste materials to resources, the amount of waste materials generated per unit has been reduced by 50.7% compared to the FY2005 level. Starting in FY2016, a goal has also been set for the amount of waste materials generated per unit of manufacturing value for overseas manufacturing facilities.

This year, Komatsu will strive to be even more thorough in adhering to the waste materials separation policy and promote activities that will help achieve its mid-term goals.

O Amount of Waste Generated (Data coverage: Komatsu Ltd. and the Komatsu Group manufacturing facilities in Japan)

Amount of Waste Generated (Data coverage: The Komatsu Group manufacturing facilities in overseas)

Effective Utilization of Resources in Manufacturing Operations (Water Resources)

In FY2014, Komatsu set a new medium-term target of achieving "a 50% or greater reduction in the amount of water used per unit of manufacturing by FY2015, compared to the FY2005 level". An effort has been made to save the consumption of underground water at Komatsu facilities located in the Hokuriku District, which are major users of underground water. The Company has achieved reductions in the amount of water used per unit of manufacturing by 67.5% compared to the FY2005 level, through the reuse of water during processing and the elimination of wasteful day-to-day practices.

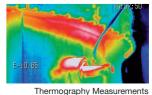
In particular, Komatsu Cabtec Co., Ltd. eliminated its groundwater consumption—which was used for cooling—by installing a chiller in every facility.

Komatsu will continue efforts to save water resources to achieve its medium-term goals.

Amount of Water Resources Used and Index Per Units of Manufacturing Value (Data coverage: Komatsu Ltd. and the

Komatsu Group manufacturing facilities in Japan) (million m³)

TOPICS


Receiving the Energy Conservation Award (Energy Conservation Case Category) "Chairman Prize of ECCJ"

Komatsu Defense Systems Division was awarded the 2015 Energy Conservation Award (Energy Conservation Case Category) Chairman Prize of Energy Conservation Center, Japan (ECCJ) sponsored by the ECCJ.

The Energy Conservation Award is awarded once a year for the purpose of contributing to the spreading of energy conservation consciousness, promoting the use of energy conserving products, development of energy conserving industries and the building of an energy conserving society. This was the first time Komatsu won this award.

The theme of this year's award was "Improving energy conservation of electrical forge furnaces in forge plants by super-insulation". By super-insulating the electrical heating furnace used in the hot forging process, the consumption of electricity was reduced by 23% (reduction amount 590Mwh). By using a thermograph to accurately identify the heat dissipation points of the furnace wall and by working with the laminate structure of the insulation materials, the insulating capabilities were significantly increased to efficiently achieve a large decrease in electricity consumption.

We aim to work towards ever higher levels of achievement by continuously making improvements in the field.

Award Ceremony

Biodiversity

Initiatives that Deal with Biodiversity

Komatsu will maintain our commitment to protecting biodiversity in our business activities, recognizing the impact of those activities on the ecosystem.

Initiatives that Deal with Biodiversity

With the establishment of Komatsu's "Declaration of Biodiversity" and "Biodiversity Guideline" in January 2011, Komatsu business units worldwide began activities designed to preserve biodiversity.

Komatsu promotes initiatives to preserve biodiversity on two levels.

First, the Company continues to promote ongoing efforts to reduce the environmental impact of Komatsu's business activities. Komatsu also considers biodiversity when deciding how land is to be used, such as when building factories.

Second, Komatsu is becoming directly involved in the preservation of biodiversity, and at the same time expanding our "one-site, one-theme activities" to raise employee's awareness of the need to preserve local ecosystems.

Initiatives of Each Business Facility Komatsu Osaka Plant:

"Osaka Biodiversity Partner Agreement"

On March 15, 2016, the Osaka Plant-one of Komatsu's major domestic plants-entered into the "Osaka Biodiversity Partner Agreement" with Osaka Prefecture, Osaka Prefecture University, Osaka Prefecture Research Institute of Environment, Agriculture and Fisheries, and Hirakata City

Based on this agreement, each partner takes a role in promoting the building of an ecological network through the management of the green space within the Osaka Plant premises (Komatsu Satoyama) that takes biodiversity into consideration. Furthermore, by using it (Komatsu Satoyama) as a field for nature observation groups for citizens, a ripple effect of contributing to the community and increased awareness of biodiversity can be expected.

The "Komatsu Satovama" of Osaka Plant is 1,500 m² and is made up of a biotope pond and a community forest where Pin Oak and Sawtooth Oak

trees that were planted when plant construction was completed grow tall above the forest floor. There are also rare species of aquatic plants growing in the pond and the number of spot-billed ducks is increasing every year.

Osaka Plant "Komatsu Satovama" Photograph by Teruyoshi Fukuzawa

Initiatives for Biodiversity in Logistics (Reduction in wood and cardboard packing materials (domestic))

When biodiversity was added to the Komatsu Earth Environment Charter in 2010, the logistics department started improvement activities, with the reduction of wood and cardboard packing materials being the main focus, based on the perspective of forestry conservation.

FY2015 Improvement Target: Basic unit of packing material used per cargo weight (kg/ton) Compared to FY2010 \(\triangle 10\)%

By making improvements such as using returnable palettes, changing materials, and simplifying/eliminating packing materials-with a particular emphasis on improving the packaging of supplementary parts and Osaka Plant's CKD parts for which large amounts of packing materials had been used-the FY2015 target was reached in the second year from when the activities were initiated from FY2011. And, by continuing with improvements since then, the following results were achieved.

(FY2010 - FY2015 Activities Results)

- Basic Unit of Packing Material Used per Cargo Weight (kg/ton) Compared to FY2010
 24.8 %
- Amount of Wood/Cardboard Used

FY2010 - FY2015 Cumulative Total △1,978tons The amount of wooden packing materials reduced when con-

verted to cedar trees (tree age 50) is equivalent to 4,457 trees*1. From the forestry conservation perspective, we kept 4,457 trees from being cut down. Also, the amount of CO₂ absorption converted to cedar trees is 62 (t-CO₂/year)*2.

- *1: One 50 year-old cedar tree weighs approximately 0.444 tons. *2: Amount of carbon absorption by one 50 year-old cedar tree is approximately 14ka/vear

Improvement Status of Returnables

- •Returnable use rate for spare parts' packing cases: 46% improvement (compared to FY2010)
- •Returnable use rate for CKD packing (all-purpose) cases: 22% improvement (compared to FY2010)

(Improvement Example of Wooden Packing Materials Elimination)

(1) PC650 For North America: Removable Brackets Attached to Main Unit (abolition of separate packaging)

(2) Spare Parts: Elimination of wooden packing materials by using returnable palettes

21% improvement (compared to FY2012) in FY2013 on using returnables for spare parts

(3) PC200-PC400: Boom packing abolished/simplified (all areas except Russia and Africa)

Before Improvement Lattice Wood Box (used for PC400 for example) 1,009kg/case	After Improvement Bare Packing (minimal metal holder on pin section) Packing Materials 370 tons/year
	Metal Holder on Pin Section

Environmental Risk Management

Promoting Legal Compliance, and Pollution **Mitigation and Prevention**

Komatsu Group companies periodically report and archive environmental measurement results, in accordance with applicable laws and regulations of national and local authorities. In FY2015, there was a minor infraction regarding the environment (temporarily exceeding the standard for water quality and failure to report certain facilities), but it has been resolved and currently there are no compliance breaches.

No major accidents or legal violations occurred that would threaten environmental contamination.

Addressing Soil and Groundwater Contamination

Komatsu has established guidelines for testing soil and groundwater at our Japan facilities, and we perform investigations according to applicable laws and regulations at business units that are to be sold, closed, or demolished. If contamination is found, the Company takes appropriate measures under the supervision of local authorities. We are performing voluntary investigations at currently operating business units to check for contamination from volatile organic compounds (VOC) from cleaning solvents that were used in the past.

Komatsu has been surveying soil and groundwater for VOC contamination at Group business units in Japan since 2005. Business unit sites at which contamination has been detected have implemented countermeasures. The Company has selected methods to clean up the sites as quickly as possible.

Work at the Oyama Plant was completed in FY2009. The clean up work at the other sites are continuing.

Going forward, along with driving the clean up activities, we will monitor the site boundaries to make sure that off-site outflow of groundwater does not exceed the standards.

O Status of Soil and Groundwater Cleanup in Japan

Business unit	Cleanup method	Cleanup status
Awazu Plant	Excavation and removal, soil vapor extraction, groundwater withdrawal and aeration, bioremediation*	In process
Komatsu Plant (formerly)	Excavation and removal, groundwater withdrawal and aeration, bioremediation	In process
Osaka Plant	Soil vapor extraction, air sparging, groundwater withdrawal and aeration, bioremediation	In process
Shonan Plant	Excavation and removal, groundwater withdrawal and aeration	In process
Tochigi Plant	Excavation and removal, bioremediation	In process

*: Bio-remediation is purification process of hazardous materials through utilizing micro organisms and returning the soil to a non-hazardous state. Surveys revealed no contamination for the Koriyama Plant, Technology Innovation Center in Hiratsuka, Techno Center in Izu and Field Testing Department in Oita

Managing PCB (Polychlorinated Biphenyl) Waste

Komatsu stores and manages PCB-containing waste, such as transformers, in accordance with Japan's "Law Concerning Special Measures Against PCB Waste" and the "Waste Disposal and Public Cleansing Law." In FY2008, Komatsu entrusted PCB disposal to the Japan Environmental Safety Corporation (JESCO). A total of 599 PCB-containing capacitors were disposed of by FY2015. As of the end of FY2015, 72 capacitors are awaiting disposal

Continuing through 2016, we plan to carry out further disposal work to locate low-concentration PCB waste as well.

ONumber of PCB-containing Transformers and Capacitors in Storage

	in otorago				
S		Capacit	ors, etc.	Stabi	lizers
Company	Site	Number of disposal in FY2015	Number of awaiting disposal	Number of disposal in FY2015	Number of awaiting disposal
	Head office	0	4	0	30
	Awazu Plant	0	18	0	64
	Osaka Plant	0	0	0	93
Ro	Oyama Plant	28	37	0	0
nats	Shonan Plant	0	2	0	0
Komatsu Ltd	Tochigi Plant	0	5	0	0
	Field Testing Department	0	0	0	4
	Construction & Mining Equipment Marketing Division	0	0	0	131
Su	btotal of Komatsu	28	66	0	322
Kor	matsu NTC Ltd.	0	2	0	0
Kor	matsu Cabtec Co., Ltd.	2	0	0	0
Komatsu Construction Equipment Sales and Service Japan Ltd.		0	4	0	448
Tot	al of Komatsu group	2	6	0	448
Tot	al	30	72	0	770

The share from the former Komatsu Plant was transferred to the Awazu Plant. The share from the former Mooka Plant was transferred to the Ovama Plant.

Management of Chemical Substances and **Pollution Prevention**

Reducing the amount of PRTR-related substances

The number of substances covered by PRTR* with a handling volume of 1 ton or more (0.5 ton or more for Class I specified) in FY2015 was 25 with an increase of 2 substances over the previous year. The handling volume (1 ton or more) has been reduced about 18% from the previous year.

Among all PRTR-listed substances, the three substances of xylene, ethyl benzene and toluene account for approximately 93% of the emissions from Komatsu and Komatsu Group manufacturing facilities. Most of the emissions are released into the atmosphere.

At domestic Komatsu group production facilities, initiatives, such as switching to paints with a lower proportion of PRTRlisted substances, using high-solid paints, improving coating efficiency and reducing film thickness, are being undertaken for the continuous reduction of handling volumes. Also, substances handled in large volumes are being changed to secondary materials that contain chemical substances having less impact on the human body. The amount of emissions in FY2015 has been reduced by about 17% from the previous year.

*PRTR: Law designed to mandate the disclosure of the amount of specific chemical substances released into the environment to promote the management of such substances (The notification system based on the

Environmental Risk Management

Reducing the amount of VOC released

The majority of VOC emissions are from VOC contained in paint such as Ethylbenzene and Xylene.

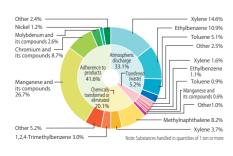
The amount of emissions in FY2015 has been reduced by about 18% from the previous year by switching to paints having a less content of volatile matter, migrating to paints having a higher coating efficiency and so on.

Further improvement efforts continue in pursuit of further reductions.

Komatsu Cabtec Co., Ltd.'s New Painting Line

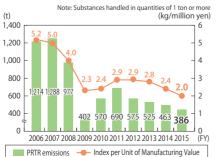
Names of Class I Designated Chemical Substances and the AmountsReleased and Transferred from Komatsu Group Manufacturing Facilities in Japan

(handling 1 ton or more, or 0.5 ton or more for Class I Specified Chemical Substances) (applicable PRTR substances from April 2010) (Unit: t)

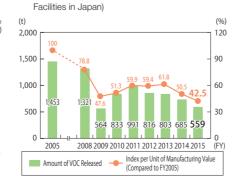

Number				Amount	released		Amount to	ransferred	Chemically	Amount
under the PRTR Law	Name	Amount handled	Air	Water	Soil	Buried	Sewage	Waste	transformed or eliminated	Contained in Products
412	Manganese and its compounds	319.3	0.5	0.0	-	-	-	7.5	—	311.3
80	Xylene	231.9	170.4	—	-	-	-	18.4	42.6	0.5
53	Ethylbenzene	155.4	126.5	—	-	-	-	12.9	15.6	0.4
87	Chromium and chromium (III) compounds	102.2	0.0	—	—	—	-	1.0	—	101.2
438	Methylna phthalene	96.5	0.5	—	—	—	-	—	96.0	—
300	Toluene	76.4	60.1	—	_	—	_	10.2	6.1	—
296	1,2,4-trimethyl benzene	55.6	18.7	—	_	_	-	1.9	35.0	0.1
453	Molybdenum and its compounds	30.7	—	—	—	—	—	0.0	—	30.6
448	Methylenebis (4,1 phenylene) = diisocyanate	23.1	—	—	—	—	-	0.0	22.5	0.5
308	Nickel	14.2	0.0	—	-	_	-	0.0	—	14.2
297	1,3,5-trimethyl benzene	8.7	4.1	—	-	_	-	0.5	4.1	_
88	Chromium (VI) compounds*1 *2	8.5	0.0	_	-	_	-	2.1	—	0.0
321	Vanadium compounds	8.1	—	—	-	_	-	0.0	—	8.1
207	2,6-Di-tert-butyl-4-methylphenol	7.8	_	0.0	-	_	-	0.7	0.0	7.0
132	Cobalt and its compounds	6.1	0.0	—	_	_	-	0.8	—	5.4
277	Triethylamine	6.0	1.2	_	-	_	-	0.0	4.8	_
460	Tricresyl phosphate	3.3	0.0	_	-	_	-	0.0	—	3.3
188	N,N-dicyclohe xylamine	3.2	0.3	0.0	-	_	-	2.6	0.2	0.1
258	1,3,5,7-tetraaza tricyclo[3, 3,1,1(3,7)] decane*3	3.1	_	_	-	_	-	0.0	1.6	1.6
349	Phenol*3	3.1	0.0	—	-	_	-	0.0	3.1	0.0
392	n-hexane	2.4	1.0	—	_	_	-	0.0	1.4	—
302	Naphthalene	2.2	1.0	—	_	_	-	0.5	0.7	—
83	Isopropyl benzene	2.0	1.4	—	—	—	-	0.1	0.4	—
71	Ferric chloride	1.2	0.0	—	-	_	-	1.2	—	_
1	Zinc compounds (water- soluble)	1.1	0.0	_	_	_	-	0.3	_	0.8

*1: During chrome plating, chromium (VI) compounds become chromium compounds. Therefore, the amount transferred and the amount contained in products are entered as chromium and chromium(III) compounds. *2: PRTR Class I Specified Chemical Substances

*3: Although the amount contained is below the amount that requires registration with the PRTR, we report the data because the amount released exceeds one ton.


Breakdown of the Amount of PRTR-related Amount of PRTR-related Substances Substances (Released and Transferred from

Komatsu Group Manufacturing Facilities in Japan)

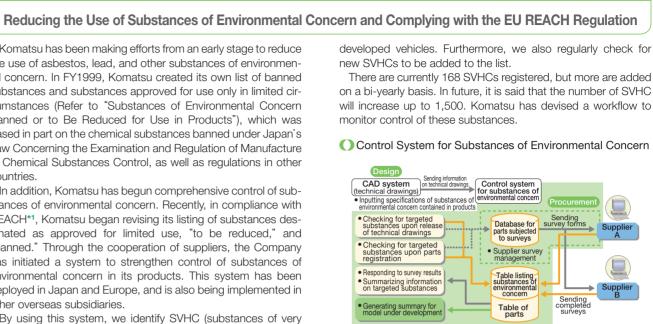


Komatsu has been making efforts from an early stage to reduce the use of asbestos, lead, and other substances of environmental concern. In FY1999. Komatsu created its own list of banned substances and substances approved for use only in limited circumstances (Refer to "Substances of Environmental Concern Banned or to Be Reduced for Use in Products"), which was based in part on the chemical substances banned under Japan's Law Concerning the Examination and Regulation of Manufacture of Chemical Substances Control, as well as regulations in other countries.

In addition, Komatsu has begun comprehensive control of substances of environmental concern. Recently, in compliance with REACH*1, Komatsu began revising its listing of substances designated as approved for limited use, "to be reduced," and "banned." Through the cooperation of suppliers, the Company has initiated a system to strengthen control of substances of environmental concern in its products. This system has been deployed in Japan and Europe, and is also being implemented in other overseas subsidiaries.

By using this system, we identify SVHC (substances of very high concern) in vehicles currently in production and in newly

O Substances of Environmental Concern Banned orto Be Reduced for Use in Products


Rank	Number	
Banned	14	 Hexavalent Chromium PCB Triethanolamine Cadmium Asbestos Hexachloro
To be reduced (Subject to limited use)	17	Lead Arsenic Specified phthalate ester (DEHP/DBP/BE Specified Brominated Flame Retardents Polycyclic Aromatic Hydrocarbons (PAH) Methanol DZ
Substances of Very High Concern (SVHC) under the EU REACH Reguleation	(168)*4	Komatsu is subject to control the following • DEHP/DBP/BBP/DIBP • RCF • Specified L

*1: REACH: EU regulations for Registration, Evaluation, Authorization and Restriction of Chemicals *2: Diethylhexyl phthalate, dibutyl phthalate, benzyl butyl phthalate, diisobutyl phthalate *3: Review for stricter limits due to regulatory trends.

*4: The number of substances registered up until December, 2015 (progressively updated). Includes materials that are not contained in Komatsu construction equipment.

Recent External Comm Komatsu's Environmental C

2015	September	Selected for inclusion in the Dow Jones Sust
2015	November	Selected by CDP as "Leading Company for (
	January	Ranked 10th (out of 705 companies) in the N Survey
2016	February	Defense Systems Division awarded the Energ Conservation Center Chairman's Award"
	February	Komatsu Environmental Report Digest 2015 Global Environment Forum of the Ministry of

Chemical Substance
Mercury PBB/PBDE Tri-substituted Organostannic Compounds Specified CFCs/Alternative CFCs (HCFC) Trichloroethylene PFOS (Perfluorooctanesulfates)
Selenium Alternative CFCs (HFC) BP/DIBP)*2 (HBCDD)/ Specified Chlorinated Flame Retardents (TCEP) RCF (Fire-Resistant Ceramic Fibers) (Alumina and Scilica Types) BNST DOTE*3 UV327*3
g substances, which might be used in Komatsu products. 3DE/Trisphosphates (2-Chloroethyl) ead Compounds (SOC 4) • DOTE • UV327

endations	and Ev	valuatio	ns on
onservati	on and	Social	Activities

tainability Indices (World and Asia Pacific)
Climate Change Information Disclosure"
Manufacturing Sector in Nihon Keizai Shimbun's 19th Environmental Management
rgy Conservation Center, Japan's "Energy Conservation Prize (Case Category) Energy
awarded the "19th Environmental Communication AwardExcellence Award" from the the Environment

Environmental Data by Manufacturing Facility in Japan

	Manu	ufacturing facility		Awazı	u Plant (est	ablished in	1938)	Kanaza	wa Plant (e	stablished	in 2007)	Osaka	a Plant (esta	ablished in	1952)
	oca			Komatsu, Is					Ishikawa Pr				saka Prefect		
		i products		hydraulic ex	cavators, si ers, motor g	d bulldozers mall and me raders, armo	dium-sized		hydraulic ex edium press	es	ge	hydraulic ex		obile crush ners, soil sta	ers/recy-
		Green Landscape (1,0	000 m²)		700				134				575/		
		ber of employees			2,9				64	-			2,6		
_		of ISO14001 certification			Septemb				May	2007			July 1	997	
		number of employees in number of employees as			natsu affiliate:	s on the prem	nises.								
				Iter	m	Actual	value	Ite	m	Actua	value	Ite	m	Actua	l value
		ronmental impact		Total CO ₂ e	missions	30,8	338 t-CO ₂	Total CO2 e	missions	1,4	407 t-CO ₂	Total CO ₂ e	missions	22,	509 t-CO ₂
5 °	Refer Resu	r to the Data on Environm ulting from Business Activ	ities for details	NOx total a	mount	75,9	907 kg	NOx total a	mount		— kg	NOx total a	imount	1,	685 kg
	on th	ne methods used to calcu	ilate amounts.	SOx total ar	mount	4,8	804 kg	SOx total a	mount		0 kg	SOx total a	mount		0 kg
		I emissions of waste are mposite of the amount r		Total emissio	ns of waste	1,3	380 t	Total emissio	ns of waste		10 t	Total emissio	ons of waste	1,	077 t
	(excl	luding valuables) and the osed.		Amount rec	ycled	-	879 t	Amount red	cycled		10 t	Amount red	cycled		075 t
	Recy	cling rate is calculated by		Recycling ra			9.9 %	Recycling r			00 %	Recycling r			99.9 %
	amoi amoi	unt recycled (including va unt generated (including v	luables) by the	BOD emissi)55 kg	BOD emiss			38 kg	BOD emiss			459 kg
1	Total	emissions of BOD and C	OD are calcu-	COD emiss			804 kg	COD emiss			24 kg	COD emiss			196 kg
		I by multiplying the averag centration by the amount of		Wastewater		599,4	17 m³	Wastewate		34,9	965 m³	Wastewate		181,	011 m ³
				Output of in power gene		14,5	90 MWh	Output of ir power gene		6	623 MWh	Output of ir power gene		4,	800 MWh
				Item	Actual consump		rted to calorie valents (GJ)	Item	Actua consump		erted to calorie ivalents (GJ)	Item	Actual consumpt		erted to calori ivalents (GJ)
				Electricity	39,289		381,996	Electricity	3,616 N		35,256	Electricity	38,025 M		369,263
F	Energ	consumption at energy conversion factor is cal-		Heavy oil A	4,029	√2 1	157,543	Heavy oil A	0 k	2	0	Heavy oil A	52 k	2	2,029
	culat	ted in keeping with Gree	nhouse Gas	Kerosene	121		430	Kerosene	0 k		0	Kerosene	81		296
	Emis	ssions Calculation - Report th is based on the act or	orting Manual,	Light oil	4131		15,760	Light oil	1 k		33	Light oil	430 k		16,439
	Glob	al Warming Countermea	asures.	Town gas		Nkm ³	0	Town gas	0 N	km ³	0	Town gas	3,234 1		135,519
				LPG	1,208 t		60,647	LPG	5 t		273	LPG	34 t		1,719
				Other			1,454	Other			0	Other			1,153
-				Total Ite	-		617,830	Total Ite	m	Actuo	35,562 value	Total Ite	-		526,417
				Groundwate		Actual	300 m ³	Groundwat			022 m ³	Groundwat			I value 934 m ³
	Nate	er consumption		Industrial wa		404,0	0 m ³	Industrial w	-	21,0	0 m ³	Industrial w	-	21,	0 m ³
				Supply wate		81.5	549 m ³	Supply wat		7.0)43 m ³	Supply wat		94.	942 m ³
				Total		485,8	349 m ³	Total		34,9	965 m³	Total		116,	876 m ³
	Þ														
	₽;	Item	Unit	Fac	ility	Regulated	Actual	Fac	ility	Regulated	Actual	Fac	ility	Regulated	Actual
nnli	F	Item Nitrogen oxides (NOx)	Unit	Faci	ility	Regulated value	Actual value	Fac	ility	Regulated value	Actual value	Fac	ility	Regulated value 150	Actual value 23
miliano	F					value	value		ility				-	value	value
nnliance C	F		ppm	Boiler		value 180	value 100		ility			Boiler	ice	value 150	value 23
mpliance Cono	F		ppm ppm	Boiler		value 180	value 100		ility			Boiler Metal furna	ice g furnace	value 150 180	value 23 56
mpliance Conditio	-	Nitrogen oxides (NOx) Sulfur oxides (SOx)	ppm ppm ppm ppm 	Boiler Diesel engir K-value reg	ne	value 180 950 17.5	value 100 760 2.53	N/A	ility			Boiler Metal furna Paint drying Gas engine	ice g furnace	value 150 180 230 600	value 23 56 13 21
mpliance Conditions t	-	Nitrogen oxides (NOx)	ppm ppm ppm 	Boiler Diesel engir K-value reg Boiler	ulation	value 180 950 17.5 0.3	value 100 760 2.53 0.054		ility			Boiler Metal furna Paint drying Gas engine Boiler	ice g furnace	value 150 180 230 600 0.05	value 23 56 13 21 0.002
mpliance Conditions to M	-	Nitrogen oxides (NOx) Sulfur oxides (SOx)	ppm ppm ppm 	Boiler Diesel engir K-value reg	ulation	value 180 950 17.5	value 100 760 2.53	N/A	ility			Boiler Metal furna Paint drying Gas engine Boiler Metal furna	ice g furnace e	value 150 180 230 600 0.05 0.1	value 23 56 13 21 0.002 0.024
mplippo Conditions to Main	-	Nitrogen oxides (NOx) Sulfur oxides (SOx)	ppm ppm ppm 	Boiler Diesel engir K-value reg Boiler	ulation	value 180 950 17.5 0.3	value 100 760 2.53 0.054	N/A	ility			Boiler Metal furna Paint drying Gas engine Boiler	ice g furnace e	value 150 180 230 600 0.05	value 23 56 13 21 0.002
mpliance Conditions to Maior Do		Nitrogen oxides (NOx) Sulfur oxides (SOx)	ppm ppm ppm 	Boiler Diesel engir K-value reg Boiler Diesel engir	ulation	value 180 950 17.5 0.3 0.1	value 100 760 2.53 0.054 0.034	N/A	ility			Boiler Metal furna Paint drying Gas engine Boiler Metal furna	ice g furnace e	value 150 180 230 600 0.05 0.1	value 23 56 13 21 0.002 0.024
mpliance Conditions to Maior Begula	Regu	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust	ppm ppm ppm g/m ³ N g/m ³ N g/m ³ N g/m ³ N g/m ³ N rclance with the Regulated value	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (ulation ne Control Law a	value 180 950 17.5 0.3 0.1	value 100 760 2.53 0.054 0.034 Jlations.	N/A				Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying	ice g furnace e ice g furnace	value 150 180 230 600 0.05 0.1	value 23 56 13 21 0.002 0.024 0.005
astisson Opsalitions to Major Dog Lations	Regu	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust	ppm ppm ppm 	Boiler Diesel engir K-value reg Boiler Diesel engir	ulation ne Control Law a	value 180 950 17.5 0.3 0.1 and local regu	value 100 760 2.53 0.054 0.034 Jlations.	N/A		value		Boiler Metal furna Paint drying Gas engine Boiler Metal furna	ice g furnace e ice g furnace	value 150 180 230 600 0.05 0.1	value 23 56 13 21 0.002 0.024 0.005
	- - - - - - - - - - - - - - - - - - -	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust ulated values are in acco	ppm ppm ppm 	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (Regulated	ulation ne Control Law :	value 180 950 17.5 0.3 0.1 and local regu Actual value	value 100 760 2.53 0.054 0.034 ulations. e	N/A N/A N/A Regulated		Value	e	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying	ice g furnace e ice g furnace	Value 150 180 230 600 0.05 0.1 0.1 0.1 Actual value	value 23 56 13 21 0.002 0.024 0.005
	Regu Regu	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust ulated values are in acco Item pH BOD (Biochemical	ppm ppm ppm 	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (Regulated value 5.8~8.6	ne Lation Control Law # Maximum 7.2	value 180 950 17.5 0.3 0.1 and local regulation Actual value Minimum 6.4	value 100 760 2.53 0.054 0.034 ulations. e Average 6.7	N/A N/A N/A Regulated value 5.0~9.0	Maximum 8.2	Value Value Actual valu Minimum 6.4	value e Average 7.1	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying Regulated value	ce g furnace g furnace g furnace Maximum 7.5	value 150 180 230 600 0.05 0.1 0.1 Actual valu Minimum 7	value 23 56 13 21 0.002 0.024 0.005 ve Average 7.2
	Regu Regu	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust ulated values are in acco Item pH	ppm ppm ppm 	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (Regulated value 5.8~8.6 80	Le Lation Law 2 Control Law 2	value 180 950 17.5 0.3 0.1 and local regulation regulation of the second sec	value 100 760 2.53 0.054 0.034 Jations. e Average 6.7 1.3	N/A N/A N/A Regulated value 5.0~9.0 80	Maximum 8.2 1.6	value	value e Average 7.1 1.4	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying Regulated value 5.8~8.6 35	ce g furnace g furnace g furnace Maximum 7.5 11	value 150 180 230 600 0.05 0.1 0.1 Actual value Minimum 7 ND	value 23 56 13 21 0.002 0.005
	Regu Regu	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust Ulated values are in accc Item pH BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand)	ppm ppm ppm 	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (Regulated value 5.8~8.6 80 80	ne Control Law of Maximum 7.2 2.3 5.1	value 180 950 17.5 0.3 0.1 Actual value Minimum 6.4 ND ND	value 100 760 2.53 0.054 0.034 ulations. e Average 6.7 1.3 2.5	N/A N/A N/A Regulated value 5.0~9.0 80 80	Maximum 8.2 1.6 9	value	value e Average 7.1 1.4 3.2	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying Regulated value 5.8~8.6 35 35	ce g furnace g furnace g furnace Maximum 7.5 11 11	value 150 180 230 600 0.05 0.1 0.1 Actual valu Minimum 7 ND 3.6	value 23 56 13 21 0.002 0.024 0.005
	Regu Wastewater	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust Ulated values are in acco Item pH BOD (Biochemical oxygen demand) COD (Chemical oxygen Demand) Suspended solids (SS)	ppm ppm ppm g/m ³ N g/m ³ N g/m ³ N g/m ³ N g/m ³ N g/m ³ N rdance with the Regulated value according to the Water Pollution Control Law 5.8~8.6 160mg/ℓ 160mg/ℓ 200mg/ℓ	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (Regulated value 5.8~8.6 80 80 120	ne Control Law x Maximum 7.2 2.3 5.1 3.0	value 180 950 17.5 0.3 0.1 and local regu Actual value Minimum 6.4 ND ND ND	value 100 760 2.53 0.054 0.034 Jations. e Average 6.7 1.3 2.5 1.5	N/A N/A N/A Begulated value 5.0~9.0 80 80 120	Maximum 8.2 1.6 9 4.2	value	value e Average 7.1 1.4 3.2 3.0	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying Paint drying 5.8~8.6 35 35 35 70	ce g furnace g furnace g furnace Maximum 7.5 11 11 11 7	value 150 180 230 600 0.05 0.1 0.1 Actual value Minimum 7 ND 3.6	value 23 56 13 21 0.002 0.024 0.005 ia Average 7.2 2.5 6.6 2.4
	Regu Regu Aastewater	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust ulated values are in acco Item pH BOD (Biochemical oxygen demand) COD (Chemical oxygen Demand) Suspended solids (SS) Mineral oils	ppm ppm ppm g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m²N g/m g/m g/m g/m g/m g/m g/m g/m g/m g/m	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (Regulated value 5.8~8.6 80 80 120 5	Lation Lation Control Law a Maximum 7.2 2.3 5.1 3.0 ND	Value 180 950 17.5 0.3 0.1 and local regulation Actual value Minimum 6.4 ND ND ND	value 100 760 2.53 0.054 0.034 ulations. e Average 6.7 1.3 2.5 1.5 ND	N/A N/A N/A Regulated value 5.0~9.0 80 80 120 5	Maximum 8.2 1.6 9 4.2 ND	value Actual value Minimum 6.4 1.1 2.0 ND	value e Average 7.1 1.4 3.2 3.0 ND	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying 5.8~8.6 35 35 35 70 5	ce g furnace g furnace g furnace g furnace 7.5 11 11 11 7 ND	value 150 180 230 600 0.05 0.1 0.1 Actual value Minimum 7 ND 3.6 ND	value 23 56 13 21 0.002 0.024 0.005 Average 7.2 2.5 6.6 2.4 ND
	Regu Regu Wastewater	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust ulated values are in acco Item PH BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand)	ppm ppm ppm g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N ordance with the Regulated value according to the water Pollution Control Law 5.8~8.6 160mg/ℓ 160mg/ℓ 200mg/ℓ 5mg/ℓ 3mg/ℓ	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (Regulated value 5.8~8.6 80 80 120 5 3	Le Lation Control Law A Maximum 7.2 2.3 5.1 3.0 ND ND	Value 180 950 17.5 0.3 0.1 Actual value Minimum 6.4 ND	value 100 760 2.53 0.054 0.034	N/A N/A N/A N/A S.0~9.0 80 80 120 5 3	Maximum 8.2 1.6 9 4.2 ND ND	value Actual valu Minimum 6.4 1.1 1.1 2.0 ND	value e Average 7.1 1.4 3.2 3.0 ND ND	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying 5.8~8.6 35 35 35 70 5 3	ce g furnace g furnace g furnace g furnace 7.5 11 11 11 7 ND ND	value 150 180 230 600 0.05 0.1 0.1 0.1 Minimum 7 ND 3.6 ND ND	value 23 56 13 21 0.002 0.024 0.005 Average 7.2 2.5 6.6 2.4 ND
	Regu Regu Rastewater	Nitrogen oxides (NOx) Soulfur oxides (SOx) Soot and dust ulated values are in acco Item PH BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc	ppm ppm ppm ppm g/m³N g/m³N g/m³N g/m³N g/m³N rclance with the according to the Water Pollution Control Law 5.8~8.6 160mg/l 160mg/l 200mg/l 5mg/l 3mg/l 2mg/l	Boiler Diesel engir K-value reg Boiler Diesel engir Piesel engir Air Pollution (Regulated value 5.8~8.6 80 80 120 5 3 3 2	Lulation The Control Law a Maximum 7.2 2.3 5.1 3.0 ND ND 0.17	Value 180 950 17.5 0.3 0.1 and local regg Actual value Minimum 6.4 ND ND ND ND ND ND	value 100 760 2.53 0.054 0.034 ulations. e Average 6.7 1.3 2.5 1.5 ND ND 0.09	N/A N/A N/A N/A S.0~9.0 80 80 120 5 3 2	Maximum 8.2 1.6 9 4.2 ND ND 1.5	value Actual valu Minimum 6.4 1.1 1.1 2.0 ND 1.1	value e Average 7.1 1.4 3.2 3.0 ND ND 1.3	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying 5.8~8.6 35 35 35 70 5 3 3 2	ce g furnace g furnace g furnace g furnace 7.5 11 11 11 7 ND	value 150 180 230 600 0.05 0.1 0.1 0.1 0.1 0.1 0.1 3.6 ND ND ND	value 23 56 13 21 0.002 0.024 0.005 verage 7.2 2.5 6.6 2.4 ND ND
	Regu Regu a	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust ulated values are in acco Item PH BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand)	ppm ppm ppm g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N ordance with the Regulated value according to the water Pollution Control Law 5.8~8.6 160mg/ℓ 160mg/ℓ 200mg/ℓ 5mg/ℓ 3mg/ℓ	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (Regulated value 5.8~8.6 80 80 120 5 3	Le Lation Control Law A Maximum 7.2 2.3 5.1 3.0 ND ND	Value 180 950 17.5 0.3 0.1 Actual value Minimum 6.4 ND	value 100 760 2.53 0.054 0.034	N/A N/A N/A N/A S.0~9.0 80 80 120 5 3	Maximum 8.2 1.6 9 4.2 ND ND	value Actual valu Minimum 6.4 1.1 1.1 2.0 ND	value e Average 7.1 1.4 3.2 3.0 ND ND	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying 5.8~8.6 35 35 35 70 5 3	ce g furnace g furnace g furnace g furnace 7.5 11 11 11 11 7 ND ND ND	value 150 180 230 600 0.05 0.1 0.1 0.1 Minimum 7 ND 3.6 ND ND	value 23 56 13 21 0.002 0.024 0.005 Average 7.2 2.5 6.6 2.4 ND
	Regu - - - - - - - - - - - - - - - - - - -	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust Ulated values are in accc Item PH BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen	ppm ppm ppm g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N scording to the Water Pollution Control Law 5.8~8.6 160mg/ℓ 200mg/ℓ 3mg/ℓ 2mg/ℓ 120mg/ℓ	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (Regulated value 5.8~8.6 80 120 5 3 2 120	Lation ne Control Law - Maximum 7.2 2.3 5.1 3.0 ND 0.17 3.9	value 180 950 17.5 0.3 0.1 and local regu Actual value Minimum 6.4 ND ND ND ND ND 1.6	value 100 760 2.53 0.054 0.034	N/A N/A N/A Regulated value 5.0~9.0 80 80 120 5 3 2 120	Maximum 8.2 1.6 9 4.2 ND 1.5 0.2	value	value	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying 5.8~8.6 35 35 35 70 5 3 3 2 120	ce g furnace g furnace g furnace Maximum 7.5 11 11 11 7 ND ND ND 37	value 150 180 230 600 0.05 0.1 0.1 0.1 0.1 3.6 ND ND ND 5.4	value 23 56 13 21 0.002 0.024 0.005 0.024 0.005 0.024 0.005 0.024 0.005 0.024 0.005 0.024 0.005 0.024 0.024 0.002 0.024 0.002 0.024 0.002 0.024 0.002 0.024 0.002 0.024 0.005 0.024 0.005 0.024 0.005 0.002 0.024 0.005 0005 0005 0005 0005 0005 0005 000000
	Regu 	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust Ulated values are in accc Item PH BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen Phosphorus	ppm ppm ppm ppm g/m³N	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (Regulated value 5.8~8.6 80 120 5 3 2 120 16	Lation Lation Ne Control Law - Maximum 7.2 2.3 5.1 3.0 ND ND 0.17 3.9 0.31	value 180 950 17.5 0.3 0.1 and local regulation regulation of the second sec	value 100 760 2.53 0.054 0.034 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	N/A N/A N/A Regulated value 5.0~9.0 80 80 120 5 3 2 120 16	Maximum 8.2 1.6 9 4.2 ND ND 1.5 0.2 4.8	value Actual valu Minimum 6.4 1.1 2.0 ND 1.1 0.04 0.03	value e Average 7.1 1.4 3.2 3.0 ND ND ND 1.3 0.1 2.4	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying Paint drying 5.8~8.6 35 35 35 35 35 35 35 35 2 120 16	ce g furnace g furnace g furnace Maximum 7.5 11 11 11 7 ND ND ND 37 0.16	value 150 180 230 600 0.05 0.1	value 23 56 13 21 0.002 0.024 0.002 0.024 0.005 Particular Average 7.2 2.5 6.6 2.4 ND ND 17.9 0.07
	Regu 	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust Ulated values are in acco Item pH BOD (Biochemical oxygen demand) COD (Chemical oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen Phosphorus Cadmium	ppm ppm ppm ppm g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N rdance with the Regulated value according to the Water Pollution Control Law 5.8~8.6 160mg/ℓ 160mg/ℓ 200mg/ℓ 5mg/ℓ 2mg/ℓ 120mg/ℓ 120mg/ℓ 0.03mg/ℓ	Boiler Diesel engir K-value reg Boiler Diesel engir Diesel engir Air Pollution (Regulated value 5.8~8.6 80 120 5 3 2 120 16 0.03 0.1 0.5	Lation Lation Control Law 3 Control Law 3 Maximum 7.2 2.3 5.1 3.0 ND ND 0.17 3.9 0.31 ND ND ND ND ND ND ND	Value 180 950 17.5 0.3 0.1 and local regulation Actual value Minimum 6.4 ND	value 100 760 2.53 0.054 0.034 Jations. e Average 6.7 1.3 2.55 1.5 ND 0.09 3.0 0.13 ND ND ND ND ND	N/A N/A N/A N/A S.0~9.0 80 80 120 5 3 2 120 16 0.03 0.1 0.5	Maximum 8.2 1.6 9 4.2 ND ND 1.5 0.2 4.8 ND ND ND ND	value Actual valu Minimum 6.4 1.1 1.1 1.1 0.04 0.03 ND ND ND ND ND ND ND	value e Average 7.1 1.4 3.2 3.0 ND ND 1.3 0.1 2.4 ND ND ND ND ND ND	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying Sale Gas Base Base Base Base Sale Base Base </td <td>ce g furnace g furnace g furnace g furnace g furnace 7.5 11 11 11 11 11 7 ND ND ND ND ND ND ND ND ND ND ND</td> <td>value 150 180 230 600 0.05 0.1 0.1 0.1 0.1 0.1 0.1 10.1 0.1 0.1 0.1 0.1 0.05 ND ND</td> <td>value 23 56 13 21 0.002 0.024 0.005 7.2 2.5 6.6 2.4 ND 17.9 0.07 ND ND ND ND ND ND ND ND ND</td>	ce g furnace g furnace g furnace g furnace g furnace 7.5 11 11 11 11 11 7 ND ND ND ND ND ND ND ND ND ND ND	value 150 180 230 600 0.05 0.1 0.1 0.1 0.1 0.1 0.1 10.1 0.1 0.1 0.1 0.1 0.05 ND ND	value 23 56 13 21 0.002 0.024 0.005 7.2 2.5 6.6 2.4 ND 17.9 0.07 ND ND ND ND ND ND ND ND ND
	Regu Regu Vastewater	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust Ulated values are in acco Item PH BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Lead Chromium (VI) Trichloroethylene	ppm ppm ppm ppm g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N ordance with the Regulated value according to the according to the water Pollution Control Law 5.8~8.6 160mg/ℓ 160mg/ℓ 200mg/ℓ 5mg/ℓ 3mg/ℓ 2mg/ℓ 120mg/ℓ 120mg/ℓ 0.03mg/ℓ 0.1mg/ℓ 0.1mg/ℓ	Boiler Diesel engir K-value reg Boiler Diesel engir Diesel engir Air Pollution (Regulated value 5.8~8.6 80 120 5 3 2 120 16 0.03 0.1 0.5 0.1	Lulation The Control Law A Maximum 7.2 2.3 5.1 3.0 ND ND ND ND ND ND ND ND ND ND	Value 180 950 17.5 0.3 0.1 and local regular Actual value Minimum 6.4 ND	value 100 760 2.53 0.054 0.034 ulations. e Average 6.7 1.3 2.5 1.5 ND ND 0.09 3.0 0.13 ND	N/A N/A N/A N/A S.0~9.0 80 80 120 5 3 2 120 16 0.03 0.1 0.5 0.1	Maximum 8.2 1.6 9 4.2 ND 1.5 0.2 4.8 ND ND ND ND ND	value Actual valu Minimum 6.4 1.1 1.1 1.1 0.04 0.03 ND ND ND ND ND ND	value	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying Saler Metal furna Paint drying Saler Saler Saler Saler Metal furna Paint drying Saler Gas Saler Saler Saler Saler Saler Baser Baser Saler Saler Saler Baser Mathematical formation Saler Saler Saler Saler </td <td>ce g furnace g furnace g furnace g furnace 7.5 11 11 11 7 ND ND ND ND ND ND ND ND ND ND</td> <td>value 150 180 230 600 0.05 0.1 0.1 0.1 0.1 0.1 0.1 10.1 Minimum 7 ND 3.6 ND ND</td> <td>value 23 56 13 21 0.002 0.024 0.005 0.024 0.005 7.2 2.5 6.6 6.6 2.4 ND ND ND ND ND ND ND ND</td>	ce g furnace g furnace g furnace g furnace 7.5 11 11 11 7 ND ND ND ND ND ND ND ND ND ND	value 150 180 230 600 0.05 0.1 0.1 0.1 0.1 0.1 0.1 10.1 Minimum 7 ND 3.6 ND	value 23 56 13 21 0.002 0.024 0.005 0.024 0.005 7.2 2.5 6.6 6.6 2.4 ND ND ND ND ND ND ND ND
	Regu Wastewater	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust Ulated values are in accc Item PH BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen Phosphorus Cadmium Lead Chromium (VI) Trichloroethylene	ppm ppm ppm g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N s/m³N g/m³N s/m³N g/m³N s/m³N g/m³N s/m³N g/m³N g/m³N g/m³N g/m³N g/m³N s/m³N g/m³N g/m³N s/m³N g/m³N g/m³N s/m³N g/m³N g/m³N g/m³N s/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N s/m³N g/m³N g/m³N g/m³N s/m³N s/m³N g/m g/m g/m g/m g/m g/m g/m g/m g/m g/m	Boiler Diesel engir K-value reg Boiler Diesel engir Air Pollution (Regulated value 5.8~8.6 80 120 5 3 2 120 16 0.03 0.1 0.5 0.1 0.5	Lation Ne Control Law Maximum 7.2 2.3 5.1 3.0 ND 0.17 3.9 0.31 ND ND ND ND ND ND ND ND ND ND	Value 180 950 17.5 0.3 0.1 and local regiment Actual value Minimum 6.4 ND	value 100 760 2.53 0.054 0.034	N/A N/A N/A Regulated value 5.0~9.0 80 120 5 3 2 120 16 0.03 0.1 0.5 0.1 0.1 0.1	Maximum 8.2 1.6 9 4.2 ND 1.5 0.2 4.8 ND ND ND ND ND ND ND ND	value Actual valu Minimum 6.4 1.1 1.1 1.1 0.03 ND ND ND ND ND ND ND ND	value	Boiler Metal furma Paint drying Gas engine Boiler Metal furma Paint drying Sale Gas Ale Sale Sale Sale Sale Base Base <td>ce g furnace g furnace g furnace g furnace Maximum 7.5 11 11 11 7 ND ND ND ND ND ND ND ND ND ND ND ND ND</td> <td>value 150 180 230 600 0.05 0.1 0.1 0.1 0.1 0.1 0.1 1.1 0.1 0.1 0.1 0.1 0.1 ND ND</td> <td>value 23 56 13 13 21 0.002 0.024 0.005 verage 7.2 2.5 6.6 2.4 ND ND 17.9 0.07 ND ND ND ND ND</td>	ce g furnace g furnace g furnace g furnace Maximum 7.5 11 11 11 7 ND ND ND ND ND ND ND ND ND ND ND ND ND	value 150 180 230 600 0.05 0.1 0.1 0.1 0.1 0.1 0.1 1.1 0.1 0.1 0.1 0.1 0.1 ND ND	value 23 56 13 13 21 0.002 0.024 0.005 verage 7.2 2.5 6.6 2.4 ND ND 17.9 0.07 ND ND ND ND ND
mpliance Conditions to Maior Regulations	Regu Wastewater	Nitrogen oxides (NOx) Sulfur oxides (SOx) Soot and dust Ulated values are in acco Item PH BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Lead Chromium (VI) Trichloroethylene	ppm ppm ppm ppm g/m³N g/m³N g/m³N g/m³N g/m³N g/m³N ordance with the Regulated value according to the according to the water Pollution Control Law 5.8~8.6 160mg/ℓ 160mg/ℓ 200mg/ℓ 5mg/ℓ 3mg/ℓ 2mg/ℓ 120mg/ℓ 120mg/ℓ 0.03mg/ℓ 0.1mg/ℓ 0.1mg/ℓ	Boiler Diesel engir K-value reg Boiler Diesel engir Diesel engir Air Pollution (Regulated value 5.8~8.6 80 120 5 3 2 120 16 0.03 0.1 0.5 0.1	Lulation The Control Law A Maximum 7.2 2.3 5.1 3.0 ND ND ND ND ND ND ND ND ND ND	Value 180 950 17.5 0.3 0.1 and local regular Actual value Minimum 6.4 ND	value 100 760 2.53 0.054 0.034 ulations. e Average 6.7 1.3 2.5 1.5 ND ND 0.09 3.0 0.13 ND	N/A N/A N/A N/A S.0~9.0 80 80 120 5 3 2 120 16 0.03 0.1 0.5 0.1	Maximum 8.2 1.6 9 4.2 ND 1.5 0.2 4.8 ND ND ND ND ND	value Actual valu Minimum 6.4 1.1 1.1 1.1 0.04 0.03 ND ND ND ND ND ND	value	Boiler Metal furna Paint drying Gas engine Boiler Metal furna Paint drying Saler Metal furna Paint drying Saler Saler Saler Saler Metal furna Paint drying Saler Gas Saler Saler Saler Saler Saler Baser Baser Saler Saler Saler Baser Mathematical formation Saler Saler Saler Saler </td <td>ce g furnace g furnace g furnace g furnace 7.5 11 11 11 7 ND ND ND ND ND ND ND ND ND ND</td> <td>value 150 180 230 600 0.05 0.1 0.1 0.1 0.1 0.1 0.1 10.1 Minimum 7 ND 3.6 ND ND</td> <td>value 23 56 13 13 21 0.002 0.024 0.005 0.024 0.005 7.2 2.5 6.6 2.4 ND ND 17.9 0.07 ND ND</td>	ce g furnace g furnace g furnace g furnace 7.5 11 11 11 7 ND ND ND ND ND ND ND ND ND ND	value 150 180 230 600 0.05 0.1 0.1 0.1 0.1 0.1 0.1 10.1 Minimum 7 ND 3.6 ND ND	value 23 56 13 13 21 0.002 0.024 0.005 0.024 0.005 7.2 2.5 6.6 2.4 ND ND 17.9 0.07 ND

Ibaraki Plant (established in 2007) Oyama Plant (established in 1962) Hitachinaka, Ibaraki Prefecture Oyama, Tochigi Prefecture Engines for construction/industrial machine diesel generators, hydraulic equipment, axl excimer lasers, etc. Large wheel loaders, dump trucks 350/71 591/126 3,170 862 May 2007 May 1997

Ite	m	Act	tual value	Iter	m	Act	tual value	Ite	m	Actua	al value	Ite	m	Actua	value
Total CO ₂ e	missions		3,402 t-CO ₂	Total CO ₂ er	missions	4	41,683 t-CO ₂	Total CO ₂ e	missions	7	,752 t-CO ₂	Total CO ₂ e	missions	3,	547 t-CO2
NOx total a			606 kg	NOx total a			22,182 kg	NOx total a			,322 kg	NOx total a		-,-	— kg
SOx total a			2 kg	SOx total ar			18 kg	SOx total a			,696 kg	SOx total a			0 kg
Total emissio			321 t	Total emissio			1.545 t	Total emissio			790 t	Total emissio			145 t
Amount rec	vcled		321 t	Amount rec	vcled		1,545 t	Amount red	vcled		790 t	Amount red	cycled		145 t
Recycling ra	,		100 %	Recycling ra	5		100 %	Recycling r	,		100 %	Recycling r	,		100 %
BOD emiss			2,831 kg	BOD emissi			2,108 kg	BOD emiss			53 kg	BOD emiss			383 kg
COD emiss			— kg	COD emissi			3,023 kg	COD emiss			152 kg	COD emiss		.,.	— kg
Wastewater	r	5	23,262 m ³	Wastewater		35	56,300 m ³	Wastewate		11	,851 m ³	Wastewate		35.)93 m ³
Output of in				Output of in				Output of ir			-	Output of ir			258 MWh
power gene	eration		641 MWh	power gene			9,063 MWh	power gene	eration	4	,386 MWh	power gene			258 IVIVN
Item	Actua consump		Converted to calorie equivalents (GJ)	Item	Actua consump		Converted to calorie equivalents (GJ)	Item	Actua consump		verted to calorie quivalents (GJ)	Item	Actua consump		erted to calorie iivalents (GJ)
Electricity	6,238	VIWh	60,860	Electricity	56,307	MWh	548,675	Electricity	8,807	MWh	85,124	Electricity	8,671	MWh	85,532
Heavy oil A	01	<2	0	Heavy oil A	33	k۵	1,286	Heavy oil A	1,084	kl	42,384	Heavy oil A	01	KQ	0
Kerosene	21	<2	57	Kerosene	1,402	k۵	51,457	Kerosene	01	kl	0	Kerosene	01	KQ	0
Light oil	353	<2	13,495	Light oil	4,243	k۵	162,086	Light oil	61	kl	232	Light oil	35 I	KQ	1,345
Town gas	01	Nkm ³	0	Town gas	2,6201	Nkm ³	109,757	Town gas	01	Nkm ³	0	Town gas	63	Nkm ³	2,636
LPG	26 t		1,302	LPG	34 t	t	1,692	LPG	469 t	t	23,534	LPG	0 t	t	0
Other			0	Other			785	Other	5		156	Other			0
Total			75,713	Total			875,739	Total			151,430	Total			89,513
Ite	m	Act	tual value	Iter	m	Act	tual value	Ite	m	Actua	al value	Ite	m	Actua	value
Groundwate	er		0 m ³	Groundwate	er	39	95,100 m ³	Groundwat	er		0 m ³	Groundwat	er		0 m ³
Industrial w	ater		0 m ³	Industrial wa	ater		0 m ³	Industrial w	ater	2	,736 m³	Industrial w	/ater		0 m ³
Supply wate	er	2	23,212 m ³	Supply wate	ər		1,672 m ³	Supply wat	er	19	,140 m ³	Supply wat	er	35,)93 m³
Total		2	23,212 m ³	Total		39	96,772 m³	Total		21	,876 m³	Total		35,)93 m³
Fac	ility	Regulate		Faci	ility	Regulat		Fac	ility	Regulated value	Actual value	Fac	ility	Regulated value	Actual value
Diesel engir	ne	100	63*	Diesel engir	ne	950	940	Cogenerati	on engine	760	652	N/A		_	_
	-			Gas turbine		70	15								
K-value reg	ulation	9	0.05	K-value reg	ulation	7.0	0.38	K-value reg	ulation	11.5	0.76				
Diesel engir	ne	0.1	0.014	Diesel engir	ne	0.1	0.03	Cogenerati	on engine	0.1	0.036	N/A		-	_
				Gas turbine		0.05	0.001								
													,		
Regulated value		Actual va	alue	Dogulated		Actual v	alue	Dogulated		Actual valu	le	Regulated value		Actual valu	е
(Sewage Water Law)	Maximum	Minimu	m Average	Regulated value	Maximum	Minimu	m Average	Regulated value	Maximum	Minimum	Average	(Sewage Water Law)	Maximum	Minimum	Average
5~9	8.9	7.8	8.5	5.8~8.6	7.3	7	7.2	5.8~8.6	7.4	6.9	7.2	5~9	8.6	7.4	8.0
600	210	42	122	25	18	1.2	5.9	40	10	1.1	4.5	600	170	1	34
_	-	-	-	25	13.6	3	8.5	40	19	5.9	12.8	-	-	-	_
000	440	04	107	50	00	0.4	0.1	70	0.0	0.5	4.0	000	100	NID	05

negulateu		Actual value	5		· · ·	Actual value	5			Actual value	5	negulateu	/	Actual value	3
value (Sewage Water Law)	Maximum	Minimum	Average	Regulated value	Maximum	Minimum	Average	Regulated value	Maximum	Minimum	Average	value (Sewage Water Law)	Maximum	Minimum	Average
5~9	8.9	7.8	8.5	5.8~8.6	7.3	7	7.2	5.8~8.6	7.4	6.9	7.2	5~9	8.6	7.4	8.0
600	210	42	122	25	18	1.2	5.9	40	10	1.1	4.5	600	170	1	34
_	-	-	-	25	13.6	3	8.5	40	19	5.9	12.8	_	-	_	_
600	440	24	187	50	23	2.4	8.1	70	6.6	2.5	4.0	600	190	ND	25
5	ND	ND	ND	5	ND	ND	ND	1	0.7	ND	0.5	5	ND	ND	ND
-	-	-	-	3	0.2	ND	0.1	2	ND	ND	—	3	0.05	ND	0.05
-	-	—	—	2	0.1	ND	0.1	2	0.05	0.05	—	2	0.32	ND	0.13
-	-	-	—	20	9.9	1.1	5.1	120	8.2	8.2	_	—	—	—	—
-	-	-	—	2	0.4	0.1	0.3	16	2.4	2.4	_	—	—	—	—
-	-	-	—	0.03	ND	ND	ND	0.03	ND	ND	_	0.03	ND	ND	ND
-	-	-	—	0.1	ND	ND	ND	0.1	ND	ND	ND	0.1	ND	ND	ND
-	-	-	—	0.1	ND	ND	ND	0.2	ND	ND	ND	0.5	ND	ND	ND
-	-	—	—	0.1	ND	ND	ND	0.1	ND	ND	—	0.1	ND	ND	ND
-	-	—	—	0.1	ND	ND	ND	0.1	ND	ND	—	0.1	ND	ND	ND
-	-	-	—	-	-	—	—	0.2	ND	ND	—	0.2	ND	ND	ND
-	-	-	—	3	ND	ND	ND	3	ND	ND	—	3	ND	ND	ND

Regulated values are in accordance with the Water Pollution Control Law, Sewerage Law and local regulations.
 ND ('not detected') indicates a value below the lower limit of detection.
 ND is considered to be the lower limit of detection when calculating the average.
 'Other items are confirmed to be below the regulated value.

)	Koriyama Plant (established in 1994)	Shonan Plant (established in 1966)
	Koriyama, Fukushima Prefecture	Hiratsuka, Kanagawa Prefecture
nery, axle,	Hydraulic cylinders, swivel joints, gear pumps	Control equipment for construction and min- ing equipment, hybrid components Thermoelectric modules, temperature control equipment, etc.
	297/153	69/14
	425	1,015
	July 2002	March 2000

*Data for the Shonan Plant include data for KELK Ltd.(excluding GIGAPHOTON, Inc)

Environmental Data by Manufacturing Facility in Japan

Ma Lo	anufacturing facility		Tochig	gi Plant (est	ablished in	1968)	Development	Division, Tec (establishe		vation Center	Komatsu C	Castex Ltd.	(establishe	d in 1952)
Lo	ocation		Oyama, To	chigi Prefect	ure		Hiratsuka, k	Kanagawa F	refecture		Himi, Toyan	na Prefecture	Э	
	ain products		Forklift truc loaders	ks, mini exc	avators, mir	ni wheel	R&D on bus Group	siness fields	of the Kom	atsu	Ironcastings casting, etc		ngs, molds f	or
Sit	te/Green Landscape (1,	000 m²)		215	6/25			195/	/124			433/	104	
Nu	umber of employees			65	50			34	11			86	9	
Da	ate of ISO14001 certificati	on acquisition		Februar	ry 1998			May	2008			January	/ 2000	
	he number of employees ir he number of employees a			natsu affiliate	s on the prer	nises.								
			Ite	m	Actua	l value	Iter	m	Actua	l value	Ite	m	Actual	value
	vironmental impact		Total CO ₂ e	missions	3,	383 t-CO ₂	Total CO ₂ er	missions	1,	358 t-CO ₂	Total CO ₂ e	missions	43,0	070 t-CO2
I ^R€ B€	lefer to the Data on Environn lesulting from Business Activ		NOx total a	mount	2,	874 kg	NOx total a	mount	1	224 kg	NOx total a	mount	7,5	30 kg
On the	n the methods used to calcu	ulate amounts.	SOx total a			181 kg	SOx total ar			1 kg	SOx total a	mount		35 kg
a	composite of the amount i	recycled	Total emissio			377 t	Total emission			155 t	Total emissio			i14 t
(e)	excluding valuables) and the isposed.	e amount	Amount rec	,		377 t	Amount rec	,		154 t	Amount rec	,		i09 t
*Re	ecycling rate is calculated by	y dividing the	Recycling r			100 %	Recycling ra			9.6 %	Recycling ra			00 %
	mount recycled (including va mount generated (including v		BOD emiss			102 kg	BOD emissi			8 kg	BOD emiss			69 kg
*To	otal emissions of BOD and C	OD are calcu-	COD emiss			136 kg	COD emiss		0.1	17 kg	COD emiss		1,906 k 710,552 r	
	ted by multiplying the average oncentration by the amount		Wastewate		20,	145 m ³	Wastewater		3,0	320 m ³	Wastewater		/10,5	52 M ³
			Output of ir power gene	eration		280 MWh	Output of in power gene	eration		5 MWh	Output of in power gene	eration		0 MWh
			Item	Actual consump	tion equ	erted to calorie iivalents (GJ)	Item	Actua consump	tion equ	erted to calorie livalents (GJ)	Item	Actual consumpt	tion equi	rted to calori valents (GJ)
			Electricity	5,2221		50,891	Electricity	2,847 N		27,514	Electricity	85,900 N		342,233
	hergy consumption he heat energy conversion	factor is cal-	Heavy oil A	550		21,504	Heavy oil A	0 k		0	Heavy oil A	1,313		51,353
CU	ulated in keeping with Gree	enhouse Gas	Kerosene	01		0	Kerosene	90 k		3,309	Kerosene	511 -		18,744
wł	missions Calculation - Rep hich is based on the act or	n Promotion of	Light oil	461	-	1,751	Light oil	6 k		230	Light oil Town gas	185 4	-	7,061
Gl	obal Warming Countermeasures.		Town gas LPG	67 t	Nkm ³	3,341	Town gas LPG	0 N 8 t	lkm ³	389	LPG	1,590 t	Nkm ³	0 79,811
			Other	071	<u> </u>	3,341	Other	ol		17	Other	1,590 l		0
			Total			77.825	Total			31.458	Total			999.202
			Ite	m	Actua	I value	Iter	n	Actua	l value	Ite	m	Actual	
			Groundwat			284 m ³	Groundwate			0 m ³	Groundwate			i52 m ³
Wa	ater consumption		Industrial water			0 m ³	Industrial w	ater		0 m ³	Industrial w	ater	0 m ³	
			Supply wat	er		0 m ³	Supply wate	er	7,0	617 m ³	Supply wate	er	19,3	39 m³
			Total		26,	284 m ³	Total		7,	617 m ³	Total		729,8	191 m³
Air	Item	Unit	Fac	ility	Regulated value	Actual value	Fac	ility	Regulated value	Actual value	Fac	ility	Regulated value	Actual value
	Nitrogen oxides (NOx)	ppm	Small boile	'S	(260)	110	Service gen	erator	190	150	Annealing fi	urnace	200	170
		ppm		-	(200) 110		Cold/hot water generator		390	36	Annealing furr		180	51
		ppm									Calciners		220	11
		ppm												
	Sulfur oxides (SOx)	-	K-value reg	ulation	7.0	0.1	K-value reg	ulation	11.5	0.07	K-value reg	ulation	17.5	1.03
Conditions to	Soot and dust	g/m³N	Small boile		(0.5)	0.006	Service gen		0.1	0.02	Annealing fu		0.25	0.01
		g/m ³ N					Cold/hot wate		0.2	0.003	Annealing furr		0.2	0.01 or les
		g/m ³ N									Calciners		0.15	0.01
		g/m ³ N									Arch furnac	e	0.1	0.01 or les
*Re	legulated values are in acco	ordance with		alues of NO				-		,				
the re	ne Air Pollution Control Law egulations.	and local	accordance because th	e with self-reg ese boilers a	gulatory mea re small.	sures,								
		Regulated value		1	Actual valu	e			Actual valu	ie			Actual value	e
		according to the Water Pollution	Regulated value	Maximum	Minimum	Average	Regulated value	Maximum	Minimum	Average	Regulated value	Maximum	Minimum	Average
	Item			1		7.0	5.8~8.6	8.2	6.7	7.4	5.8~8.6	8.4	6.6	7.6
Wastewate	pH	Control Law	5.8~8.6	8.4	6.9	(.3				+		5.3	ND	1.6
	BOD (Biochemical		5.8~8.6 25	8.4 13.9	6.9 1.5	7.3 5.1	10	4	1	2	25	0.0		
		Control Law 5.8~8.6	1					4	1	2 5.2	25 160	3.9	1.8	2.6
	BOD (Biochemical oxygen demand) COD (Chemical	Control Law 5.8~8.6 160mg/2	25	13.9	1.5	5.1	10		-				1.8 ND	3.1
	BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand)	Control Law 5.8~8.6 160mg/l 160mg/l	25 25	13.9 14.8	1.5 3.1	5.1 6.8	10 25	7	4	5.2	160	3.9	-	
	BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS)	Control Law 5.8~8.6 160mg/& 160mg/& 200mg/&	25 25 50	13.9 14.8 20.4	1.5 3.1 1.6	5.1 6.8 10.4	10 25 65	7	4 ND	5.2 4.2	160 90	3.9 8	ND	3.1
	BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils	Control Law 5.8~8.6 160mg/@ 160mg/@ 200mg/@ 5mg/@ 3mg/@ 2mg/@	25 25 50 5 3 2	13.9 14.8 20.4 1.4 ND 0.2	1.5 3.1 1.6 ND ND	5.1 6.8 10.4 0.7 ND 0.1	10 25 65 5 1 1	7 10 ND ND 0.04	4 ND ND ND ND	5.2 4.2 ND ND 0.03	160 90 5 1 2	3.9 8 1.7 ND ND	ND ND ND ND	3.1 0.6 ND ND
	BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen	Control Law 5.8~8.6 160mg/& 160mg/& 200mg/& 5mg/& 3mg/& 2mg/& 120mg/&	25 25 50 5 3 2 20	13.9 14.8 20.4 1.4 ND 0.2 11.6	1.5 3.1 1.6 ND ND 0.8	5.1 6.8 10.4 0.7 ND 0.1 5.2	10 25 65 5 1	7 10 ND ND	4 ND ND ND	5.2 4.2 ND ND	160 90 5 1 2 120	3.9 8 1.7 ND ND 6.6	ND ND ND ND 1.4	3.1 0.6 ND ND 4.0
	BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen Phosphorus	Control Law 5.8~8.6 160mg/2 160mg/2 200mg/2 5mg/2 3mg/2 3mg/2 2mg/2 120mg/2 16mg/2	25 25 50 5 3 2 20 2	13.9 14.8 20.4 1.4 ND 0.2 11.6 1.0	1.5 3.1 1.6 ND ND 0.8 ND	5.1 6.8 10.4 0.7 ND 0.1 5.2 0.4	10 25 65 5 1 1 	7 10 ND 0.04 —	4 ND ND ND 	5.2 4.2 ND ND 0.03 -	160 90 5 1 2 120 16	3.9 8 1.7 ND 6.6 1.6	ND ND ND 1.4 0.1	3.1 0.6 ND ND 4.0 0.5
	BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen Phosphorus Cadmium	Control Law 5.8~8.6 160mg/2 200mg/2 5mg/2 3mg/2 2mg/2 120mg/2 16mg/2 0.03mg/2	25 25 50 5 3 2 20 2 0.03	13.9 14.8 20.4 1.4 ND 0.2 11.6 1.0 ND	1.5 3.1 1.6 ND ND ND 0.8 ND ND	5.1 6.8 10.4 0.7 ND 0.1 5.2 0.4 ND	10 25 65 5 1 1 	7 10 ND 0.04 ND	4 ND ND ND ND	5.2 4.2 ND 0.03 ND	160 90 5 1 2 120 16 0.03	3.9 8 1.7 ND 6.6 1.6 ND	ND ND ND 1.4 0.1 ND	3.1 0.6 ND ND 4.0 0.5 ND
	BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen Phosphorus Cadmium Lead	Control Law 5.8~8.6 160mg/2 200mg/2 5mg/2 3mg/2 2mg/2 120mg/2 120mg/2 0.03mg/2 0.1mg/2	25 25 50 5 3 2 20 2 0.03 0.1	13.9 14.8 20.4 1.4 ND 0.2 11.6 1.0 ND ND	1.5 3.1 1.6 ND ND ND 0.8 ND ND ND ND	5.1 6.8 10.4 0.7 ND 0.1 5.2 0.4 ND ND	10 25 65 1 1 0.03 0.1	7 10 ND 0.04 ND ND ND	4 ND ND ND ND ND	5.2 4.2 ND 0.03 ND ND ND	160 90 5 1 2 120 16 0.03 0.1	3.9 8 1.7 ND 6.6 1.6 ND ND ND	ND ND ND 1.4 0.1 ND ND	3.1 0.6 ND ND 4.0 0.5 ND ND
	BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen Phosphorus Cadmium Lead Chromium (VI)	Control Law 5.8~8.6 160mg/& 160mg/& 200mg/& 5mg// 3mg// 2mg// 120mg// 120mg// 0.03mg// 0.1mg// 0.5mg// 0.5mg//	25 25 50 5 3 2 20 2 0.03 0.1 0.1	13.9 14.8 20.4 1.4 ND 0.2 11.6 1.0 ND ND ND	1.5 3.1 1.6 ND ND 0.8 ND ND ND ND ND	5.1 6.8 10.4 0.7 ND 0.1 5.2 0.4 ND ND ND	10 25 65 5 1 1 	7 10 ND 0.04 ND ND ND	4 ND ND ND ND ND ND ND ND	5.2 4.2 ND 0.03 ND ND ND ND	160 90 5 1 2 120 16 0.03 0.1 0.5	3.9 8 1.7 ND 6.6 1.6 ND ND ND ND	ND ND ND 1.4 0.1 ND ND ND ND	3.1 0.6 ND ND 4.0 0.5 ND ND ND
	BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen Phosphorus Cadmium Lead Chromium (VI) Trichloroethylene	Control Law 5.8~8.6 160mg/& 160mg/& 200mg/& 5mg/& 3mg/& 2mg/& 120mg/& 120mg/& 0.03mg/& 0.1mg/& 0.1mg/& 0.1mg/&	25 25 50 5 3 20 20 20 0.03 0.1 0.1 0.1	13.9 14.8 20.4 1.4 ND 0.2 11.6 1.0 ND ND ND ND	1.5 3.1 1.6 ND ND 0.8 ND ND ND ND ND ND	5.1 6.8 10.4 0.7 ND 0.1 5.2 0.4 ND ND ND ND	10 25 65 1 1 - 0.03 0.1 0.5 0.1	7 10 ND 0.04 ND ND ND ND ND	4 ND ND ND ND ND ND ND ND ND	5.2 4.2 ND 0.03 ND ND ND ND ND	160 90 5 1 2 120 16 0.03 0.1 0.5 0.1	3.9 8 1.7 ND 6.6 1.6 ND ND ND ND ND	ND ND ND 1.4 0.1 ND ND ND ND ND ND	3.1 0.6 ND 4.0 0.5 ND ND ND ND
	BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen Phosphorus Cadmium Lead Chromium (VI) Trichloroethylene Tetrachloroethylene	Control Law 5.8~8.6 160mg/l 200mg/l 5mg/l 3mg/l 2mg/l 120mg/l 120mg/l 120mg/l 0.03mg/l 0.1mg/l 0.1mg/l 0.1mg/l 0.1mg/l	25 25 50 5 20 20 2 0.03 0.1 0.1 0.1 0.1	13.9 14.8 20.4 1.4 ND 0.2 11.6 1.0 ND ND ND ND ND	1.5 3.1 1.6 ND ND 0.8 ND ND ND ND ND ND	5.1 6.8 10.4 0.7 ND 0.1 5.2 0.4 ND ND ND ND ND	10 25 65 1 1 - 0.03 0.1 0.5 0.1 0.1	7 10 ND 0.04 ND ND ND ND ND ND ND	4 ND ND ND ND ND ND ND ND ND ND	5.2 4.2 ND 0.03 ND ND ND ND ND ND	160 90 5 1 2 120 16 0.03 0.1 0.5 0.1 0.1	3.9 8 1.7 ND 0.6 6.6 1.6 ND ND ND ND ND ND	ND ND ND 1.4 0.1 ND ND ND ND ND ND ND ND ND ND	3.1 0.6 ND ND 4.0 0.5 ND ND ND ND ND
X	BOD (Biochemical oxygen demand) COD (Chemical Oxygen Demand) Suspended solids (SS) Mineral oils Copper Zinc Nitrogen Phosphorus Cadmium Lead Chromium (VI) Trichloroethylene	Control Law 5.8~8.6 160mg/& 160mg/& 200mg/& 5mg/& 3mg/& 2mg/& 120mg/& 120mg/& 0.03mg/& 0.1mg/& 0.1mg/& 0.1mg/&	25 25 50 5 3 20 20 20 0.03 0.1 0.1 0.1	13.9 14.8 20.4 1.4 ND 0.2 11.6 1.0 ND ND ND ND	1.5 3.1 1.6 ND ND 0.8 ND ND ND ND ND ND	5.1 6.8 10.4 0.7 ND 0.1 5.2 0.4 ND ND ND ND	10 25 65 1 1 - 0.03 0.1 0.5 0.1	7 10 ND 0.04 ND ND ND ND ND	4 ND ND ND ND ND ND ND ND ND	5.2 4.2 ND 0.03 ND ND ND ND ND	160 90 5 1 2 120 16 0.03 0.1 0.5 0.1	3.9 8 1.7 ND 6.6 1.6 ND ND ND ND ND	ND ND ND 1.4 0.1 ND ND ND ND ND ND	3. 0.0 NE NE 4.0 0.3 NE NE NE

the Water Pollution Control Law, Sewerage Law and local regulations. *ND ('not detected') indicates a value below the lower limit of detection. *ND is considered to be the lower limit of detection when calculating the average. *Other items are confirmed to be below the regulated value.

Ş	Mar	nufacturing facility				`	shed in 1945)				hed in 1918)				
erview		ation			ama Prefect					higa Prefect	ure				
ev		n products	200	Machine too			hines, wire saws	Cabs for co							
		/Green Landscape (1,0	000 m²)	<u> </u>		6/22				2/10 47					
	_	nber of employees		<u> </u>		507 9 1999				ber 2007					
	*The	e of ISO14001 certification e number of employees in e number of employees as	cludes those wo				premises.		Decenii	Jei 2007]				
Mai			S OF LITE END OF N		em	Ac	tual value	Ite	m	Actua	al value				
윽	*Ref	ironmental impact er to the Data on Environm		Total CO ₂ e NOx total a			7,390 t-CO ₂	Total CO ₂ e NOx total a		3,	052 t-CO ₂ 11 kg				
Performance	ont	sulting from Business Activi the methods used to calcu	ulate amounts.	SOx total a			— kg 0 kg	SOx total a			0 kg				
	*Tota	al emissions of waste are omposite of the amount r	expressed as	Total emissio		<u> </u>	1,432 t	Total emissio			936 t				
	(exc	cluding valuables) and the		Amount red	cycled		1,430 t	Amount rec	ycled		851 t				
6		posed. cycling rate is calculated by	dividing the	Recycling r			99.9 %	Recycling r		-	97.9 %				
	am	ount recycled (including va	luables) by the	BOD emiss		<u> </u>	711 kg	BOD emiss			150 kg				
	*Tota	ount generated (including v al emissions of BOD and C	OD are calcu-	COD emiss Wastewate		6	— kg 31,512 m ³	COD emiss Wastewate			198 kg 923 m ³				
	late	d by multiplying the averag centration by the amount (ge of wastewater.	Output of ir				Output of in							
				power gene	eration		65 MWh	power gene	eration		0 MWh				
				Item Electricity	Actua consump 18,476	otion	Converted to calorie equivalents (GJ) 180,962	Item Electricity	Actua consump 6,0131	otion equ	verted to calorie uivalents (GJ) 58,732				
		rgy consumption		Heavy oil A		kl	0	Heavy oil A	0,0131		0				
	cula	e heat energy conversion ated in keeping with Gree	enhouse Gas	Kerosene		kl	0	Kerosene	61		221				
	whi	issions Calculation - Rep ich is based on the act or	n Promotion of	Light oil Town gas	47	kl Nkm ³	1,805 0	Light oil Town gas	291	kl Nkm ³	1,102 0				
	GIO	bal Warming Countermea	asures.	LPG	57		1km ³ 0 2,877 [213 t		10,668				
				Other			195 642	Other			221				
				Total Item		Ac	185,643 tual value	Total Ite	m	Actua	70,944 al value				
				Groundwat			35,512 m ³	Groundwat			380 m ³				
	Wat	ter consumption		Industrial w			0 m ³	Industrial w			0 m ³				
				Supply wat Total	ier		12,714 m ³ 48.226 m ³	Supply wat Total	er		503 m ³ 883 m ³				
8	Air	Item	Unit	Faci	ility	Regulate		Faci	ility	Regulated	Actual value				
Compliance		Nitrogen oxides (NOx)	ppm	N/A		-		N/A							
nce		Sulfur oxides (SOx) Soot and dust	 g/m ³ N	N/A		<u> </u>		N/A							
Conditions	*Reg	gulated values are in acco	÷ (Control Law	and local	regulations.								
24	Wa		Regulated value according to the	Regulated		Actual v	alue	Regulated		Actual valu	le				
	Wastewa	Item	Water Pollution Control Law	value	Maximum	Minimu	um Average	value	Maximum	Minimum	Average				
to Major Deculations	rater	pH BOD (Biochemical	5.8~8.6	5.8~8.6	7.3	6.2		5.8~8.6	7.1	6.7	6.9				
,		oxygen demand)	160mg/l	160	2.3	ND	1.1	20	14.0	ND	2.8				
		COD (Chemical Oxygen Demand)	160mg/l	-	-	-	-	20	11.3	1.4	3.7				
2		Suspended solids (SS)	200mg/l	200	6.0	ND	1.7	20	5.4	ND	2.2				
2		Mineral oils	5mg/l 3mg/l	5	1	ND	0.8	0.1	- ND	- ND	- ND				
		Copper Zinc	3mg/l 2mg/l	_	_	- 1		0.1	0.15	ND	0.05				
		Nitrogen	120mg/l	-	-	- 1	-	8	3.1	0.8	1.7				
		Phosphorus	16mg/l	—	-	-	-	0.6	ND	ND	ND				
	*Bec	Lead gulated values are in acco	0.1mg/2	*Data for Kc	matsu NTC	td. inclu	ude data for the	0.03	ND	ND	ND				
7	Lav *ND belo *ND det *Oth reg	Water Pollution Control L v and local regulations. ("not detected") indicate ow the lower limit of dete is considered to be the lø ection when calculating ti er items are confirmed to ulated value.	s a value ction. ower limit of he average.		ant and the Fu			l teo		Actu		l to	~		studiyoluo
Maior	*Tota	ironmental impact al emissions of waste are			em emissions	AC	4,179 t-CO2	Ite Total CO ₂ e		-	al value 2,022 t-CO ₂	Iter Total CO ₂ en		AC	2,269 t-C
	valu	nposite of the amount rec ables) and the amount disp	osed.	Total emiss			5,104 t	Total emiss			2,459 t	Total emissic			4,834 t
for	*Rec	cycling rate is calculated	by dividing the	Amount red	cycled		4,112 t	Amount rec	cycled		,266 t	waste Amount recy	/cled		4,400 t
Performance		ount generated (including va		Recycling		<u> </u>	80.6 %	Recycling r			51.5 %	Recycling rat			91.0 %
Ð				Item	Actu		Converted to calorie equivalents (GJ)	Item	Actu consum		nverted to calorie quivalents (GJ)	Item	Actual consump		Converted to cal equivalents (G
	Free	rgy consumption		Electricity	7,510	· · ·	74,879	Electricity	4,209	<u>. </u>	41,967	Electricity	4,824		48,094
	*The	heat energy conversion		Heavy oil A	37	k۵	1,458	Heavy oil A	0	kl	0	Heavy oil A	0	k۵	0
		ated in keeping with Gree issions Calculation - Rep		Kerosene	380		13,942	Kerosene	61		2,246	Kerosene	130		4,771
	whi	ich is based on the act or	n Promotion of	Light oil LPG	47		1,783	Light oil LPG	89		3,352 183	Light oil LPG	6	kl	222
	GIO	bal Warming Countermea	asules.	Town gas	21	L	891	Town gas	4	ι	0	Town gas		L	1,092
				Total	1		94,000	Total			47,747	Total			54,265
Overview	Mar	nufacturing facility		Service Ja	apan Ltd. (est	tablished i	ent Sales and in March 1967)	Komatsu I	Rental Ltd. (e	established in	Oct. 2006)	Komatsu For	rklift Japan Ltd.	. (establis	hed in Jan. 197
view	Loc	ation			ogishima, Ka awa (Head c		ku, Kawasaki-		-		(Head office)	Shinagawa,	Tokyo metro	opolitar	(Head offic
	Acti	ivities		Sales and s	service for c	onstructi	ion machinery				ineering works vehicles	Sales and s	ervice for for	rklift	
	Nun	nber of bases			1	04		construction machine apparatuses, and vehicles				130			
		lumber of bases		104				901				1,590			
	Nun	nber of employees e of ISO14001 certification			1,0	917			9				1,59		

Environmental Data by Manufacturing Facility outside Japan

		The Americ	cas			Europe			
Q		СМО	PMO	NMO	KDB	Hensley	KUK	KOHAG	KMG
Overview		K	omatsu America Co	rp.					
lew	Manufacturing facilities	Chattanooga Manufacturing Operation	Peoria Manufacturing Operation	Newberry Manufacturing Operation	Komatsu do Brasil Ltda.	Hensley Industries, Inc.	Komatsu UK Ltd.	Komatsu Hanomag GmbH	Komatsu Mining Germany GmbH
	Location	Tennessee, U.S.A.	Illinois, U.S.A.	South Carolina, U.S.A.	São Paulo, Brazil	Texas, U.S.A.	Birtley, United Kingdom	Hannover, Germany	Düsseldorf, Germany
	Main products	Hydraulic exca- vators, motor graders	Large wheel load- ers, large dump trucks	Utility equipment (small construc- tion equipment)	Hydraulic exca- vators, bulldozers	Buckets, teeth and edges	Hydraulic excavators	Wheel loaders	Ultra-large hydraulic excavators
	Number of employees		1,640		844	410	318	500	626
5	Electricity (MWh)	8,061	12,920*	2,381	15,448	22,845	5,120	5,305	5,641
Energy	Heavy oil, light oil, et al. (kl)	—	66	-	78	63	64	_	36
	Natural gas (thousand m ³)	125	1,389	34	0	2,146	788	836	937
consumption	LPG, et al. (t)	-	21 (LPG)	-	20 (LPG)	68 (LPG)	-	2,235* (District heating)	14 (LPG)
otion	Total energy consumption (GJ)	85,123	185,025	25,012	175,910	314,898	95,771	86,347	91,865
-	CO ₂ (t-CO ₂)	4,845	3,000	1,424	2,249	17,661	4,267	4,068	4,287
Wa	ter consumption (t)	16,746	15,489	1,980	17,164	25,324	10,187	11,071	6,895
Tota	al emissions of waste (t)	1,097	1,760	31	3,821	15,100	1,302	1,604	2,185
Date	of ISO14001 certification acquisition	April 1998	March 2002	March 2004	January 2002	November 2009	December 1998	September 2000	July 2002
			*Electricity of a renew-	-				*Unit:MWh	

able source is used.

		Europe			Asia				
Ş		KIM	KFAB	KMR	KI	KUI	BKC	KIPL	KSC
Overview	Manufacturing facilities	Komatsu Italia Manufacturing S.p.A	Komatsu Forest AB	Komatsu Manufacturing Rus, LLC	PT Komatsu Indonesia Tbk	PT Komatsu Undercarriage Indonesia	Bangkok Komatsu Co., Ltd.	Komatsu India Pvt.	Komatsu Shantui Construction Machinery Co., Ltd.
	Location	Este (PD), Italy	Umeå, Sweden	Yaroslavl, Russia	Jakarta, Indonesia	West Java, Indonesia	Chonburi, Thailand	Chennai, India	Shandong, China
	Main products	Utility equipment (small construc- tion equipment)	Forestry equipment	Hydraulic excavators	Hydraulic exca- vators, bulldozers, wheel loaders	Components for construction equipment, crawler type for construction machinery, pins	Hydraulic exca- vators, castiron parts	Dump trucks	Hydraulic excavators
	Number of employees	329	579	229	1,043	742	784	339	678
5	Electricity (MWh)	3,032	2,541	2,764	15,712	35,570	20,925	3,023	3,612
Energy	Heavy oil, light oil, et al. (kl)	—	29	26	212	436	128	293	26
	Natural gas (thousand m ³)	390	_	966	1,041	513	_	_	-
consumptior	LPG, et al. (t)	_	1,978* (District heating)	_	150 (LPG)	234 (LPG)	151 (LPG)	_	5,808 (LNG·Steam)
otior	Total energy consumption (GJ)	45,196	29,487	68,101	214,507	404,236	221,152	41,447	62,162
	CO ₂ (t-CO ₂)	2,028	287	2,891	13,943	27,552	11,983	3,600	3,525
Wat	er consumption (t)	11,612	3,825	9,447	45,261	56,266	32,454	32,117	58,305
Tota	I emissions of waste (t)	1,118	263	793	1,508	3,583	2,582	195	345
Date	of ISO14001 certification acquisition	November 2001	October 2003	January 2014	June 2000	October 2008	September 2001	January 2010	December 2000
			*Unit:MWh						

Acia

Asia

Europo

		Asia			
ò		KCCM	KCF	KSD	KUCC
Overview	Manufacturing facilities	Komatsu (Changzhou) Construction Machinery Corp.	Komatsu (Changzhou) Foundry Corp.	Komatsu (Shandong) Construction Machinery Corp.	Komatsu Undercarriage China Corp.
	Location	Jiangsu, China	Jiangsu, China	Shandong, China	Shandong, China
	Main products	Wheel loaders, hydraulic excavators	Iron castings and foundry molds for construction and casting parts	Mini construction equipment, hydraulic equip- ment and casting parts	Crawler type for construction machinery
	Number of employees	529	244	1,10	34
Ē	Electricity (MWh	5,317	14,623	19,562	23,754
Energy	Heavy oil, light oil, et al. (ka) 117	37	173	44.2
8	Natural gas (thousand m ³) —	-	_	_
consumptior	LPG, et al. (t) 86 (LNG)	1,276 (LPG·LNG·Steam)	3,959 (LNG•Steam)	807 (LNG)
tior	Total energy consumption (G.) 62,131	155,054	251,924	282,343
2	CO ₂ (t-CO ₂	4,664	11,836	17,572	20,493
Wat	er consumption (t	36,700	38,485	126,859	79,033
Tota	I emissions of waste (t	404	5,287	1,849	3,360
Date	of ISO14001 certification acquisitio	September 2000	December 1999	September 2013	December 2011

Notes 1. All data, except the number of employees, were derived from performances of all manufacturing facilities during FY2015. The number of employees was based on the companies' data as of March 31, 2016.
 2. Conversion to CO₂ and total energy consumption were based on statistical data of each region, country, and that of IEA for 2015.
 3. Total emissions of waste are expressed as a composite of the amount recycled and the amount disposed.

Environmental Education and Environmental Accounting

Courses in Environmental Education and Training in Japan (excluding general environmental courses)

Organizer	No.	Course name	Target	Participants					
Organizer	INO.	Gourse name	Targer	FY2012	FY2013	FY2014	FY2015		
	1	Advanced environmental education (held every two years)	Environmental specialists (Komatsu and affiliates)	_	19	_	21		
	2	Overview of the ISO14000 series	Managers (Komatsu, affiliates, and business associates)	72	80	53	—		
[3	ISO14001 Standards Amendment (2015 Revision)	Stakeholders regarding ISO14001 amandment	_	-	—	281		
-	4	Training of internal auditors / Refresher courses	Environmental auditors (Komatsu, affiliates, and busi- ness associates)	380	177	35	_		
Head Office	5	Development and manufacturing (introductory)	Development and manufacturing staff (for second-year employees)	248	300	341	334		
Office	6	Environmental training for manufacturing engineers	Assistant foremen/ foremen/ manufacturing engineers/ stu- dents of Komatsu Institute of Technology	160	152	242	252		
	7	Training new employees	New Employees (Komatsu and affiliates)	354	391	261	333		
	8	Lectures on the environment, experience-oriented education	Komatsu Group employees	1,316	1,408	1,527	2,729		
	9	Education to refresh environmental understanding (e-Learning)	Komatsu Group managers and employees	153	193	154	181		
ĺ	10	Newly appointed manager training	Komatsu Group newly appointed managers	_	—	155	168		
	1	Education in the basics of auditing	Managers and employees	221	257	100	185		
Divisions	2	Overview of the ISO14000 series	Managers and employees	183	645	1,464	996		
overseeing	3	Training of internal auditors	Environmental auditors	38	16	38	28		
environmental	4	Training new employees	New Employees	940	1,107	700	1,618		
nanagement	5	Regulatory education and personnel exchange	Employees (and other participants)	1,066	3,274	1,245	467		
at plants	6	Specialist training	Environmental conservation practitioners (persons involved in regulatory affairs, etc.)	2,561	616	355	428		

Number of Persons Having Environment-related Certificate Effects on Society*1

	matsu and Komatsu Group manufacturing facilities in Japan (including the Research Division, Field Testing Dep						
	Certificate name	Number of persons with certificate*					
	Certificate fiame	FY2012	FY2013	FY2014	FY2		
	Pollution control administrators	230 (33)	241 (33)	249 (33)	247		
	Energy administrators	45 (10)	45 (10)	50 (10)	41		
	Environmental management system auditors	4	5	4	4		

*Figures in parentheses indicate the number of officers required

Environmental Costs (Investments and expenses)

Investment		Investment	Expenses					
Category	FY2014	2014 FY2015		FY2014		FY2015		
Category	Investment*1 (millions of yen)	Investment*1 (millions of yen)	Contents	Expenses*1 (millions of yen)	Expenses*1 (millions of yen)	Contents		
1. Business area cost	1,297	1,586		2,858	2,603			
① Pollution prevention cost	365	235	 Investment for installation and conver- sion of pollution mitigation/prevention facilities installation of air pollution con- trol equipment, etc. 	730	673	 Cost of maintaining equipment for mitigation/pre- vention of air and water pollution and for noise and vibration prevention (labor and depreciation costs) 		
② Global environmental conser- vation cost	899	1,164	 Investment for implementing energy conservation measures installation of energy-saving air conditioners, heat-treating furnace energy saving facilities, etc. 	1,348	1,106	 Cost of maintaining energy conservation facilities, such as cogeneration systems (labor and depreci- ation costs) 		
③ Resource circulation cost	33	187	 Investment for reducing the volume of waste materials (recycling facilities, etc.) 	780	825	Waste material processing cost		
2. Upstream/downstream cost	9	9	 Additional investment needed to pro- vide eco-friendly product services 	152	288	 Reduction of the environmental impact of mass-production units 		
3. Administration cost	91	25	 Investment for beautifying manufactur- ing sites 	787	731	 Cost of maintaining environmental management systems Cost of creating green spaces and beautifying manufacturing sites 		
4. R&D cost	303	281	 Investment in research facilities for reduction of environmental impact 	21,513	21,514	 Cost of R&D activities to reduce the environmental impact of products Cost of R&D activities to develop environmental- ly-friendly construction equipment 		
5. Social activity cost	0	0		13	10			
6. Environmental remediation cost	0	0		253	123	 Cost of conducting surveys and remedial counter- measures related to soil and groundwater contamination PCB disposal costs 		
Total	1,699	1,901		25,576	25,270			

*1: All figures are rounded off to the nearest million yen.

Environmental Effects

Komatsu and ł (excluding Komatsu Hou) Komatsu				
Environmental in	nvironmental impact reduction effects				
Items of envi-	Reduction	Rate of year-	Tangible benefits		
ronmental impact	amount (t/year)	on-year changes (%)	Туре		
CO ₂ emissions	-22,680	-11.9	Energy conservati		
Water consumption	-420,422	-14.0	Resource conservat		
Waste materials	-2,504	-16.4	Waste materials reduction		
generation			Gain on sale of valuables		
			Other		
	Total				

conomic benefits					
angible benefits			Avoidance benefits of	Contribution to profits*2	
Туре	Monetary value*1 (millions of yen)	Major activities	environmental risks*2		
nergy conservation	511	 Energy conversion, etc. 	 In FY2015, there were 		
lesource conservation	3		no major accidents or	 Proceeds from value added due to reduced environmental impact of 	
Vaste materials eduction	533	 Promotion of recycling through thor- oughgoing sorting 	legal infractions that would contaminate the environment. • No litigation costs were		
ain on sale of aluables	213	 Reuse of furnace slag for roadbed materials 			
)ther	2		required in Japan during		
otal	1,262		FY2015.		

ti: Figures are rounded off to the nearest million yen.
 '2: Komatsu used statements instead of numeral figures to describe the "Avoidance benefits of environmental risks" and the "Contribution to profits." The company will further develop concepts and ways to understand diffects in these categories. The sales amounts of businesses for content presented in "Contributions to profits" in FY2015 are as follows:

 Mobile recycling equipment business: 15billion yen
 Engine business: 1,220 billion yen (Total for intra-Group sales from the Engine Business Division)

epartment) 2015 (31) (9)

Environmental impact reduction effects

from product operation

Waste components reduction resulting from "Reman" business

 Environmental impact reduction resulting from on-site recycling methods
 Environmental impact reduction resulting Environmental impact reduction resulting Savings in operating and maintenance Savings in operating and maintenance

Tangible benefits

costs Reduction of repair costs

1: Concerning the effects on society derived from product use by customers, the major items of qualitative information are shown here as a reference.

u Group manufacturing facilities in Japan (excluding Komatsu House Ltd., including Technology Innovation Center)

Komatsu and Komatsu Group manufacturing facilities in Japan (excluding Komatsu House Ltd., including Technology Innovation Center)

Environmental Report Digest 2016

(30